Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
cbcd53af
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cbcd53af
编写于
2月 27, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:baidu/Paddle into feature/clean_mnist_v2
上级
9435025b
2f604064
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
546 addition
and
113 deletion
+546
-113
doc/api/trainer_config_helpers/layers.rst
doc/api/trainer_config_helpers/layers.rst
+24
-12
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+94
-19
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+199
-74
python/paddle/v2/pooling.py
python/paddle/v2/pooling.py
+24
-0
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+203
-7
未找到文件。
doc/api/trainer_config_helpers/layers.rst
浏览文件 @
cbcd53af
...
...
@@ -139,24 +139,12 @@ lstmemory
:members: lstmemory
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
grumemory
---------
.. automodule:: paddle.trainer_config_helpers.layers
:members: grumemory
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
Recurrent Layer Group
=====================
...
...
@@ -172,6 +160,18 @@ recurrent_group
:members: recurrent_group
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
beam_search
------------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
@@ -308,6 +308,12 @@ repeat_layer
:members: repeat_layer
:noindex:
rotate_layer
------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: rotate_layer
:noindex:
seq_reshape_layer
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
@@ -462,6 +468,12 @@ ctc_layer
:members: ctc_layer
:noindex:
warp_ctc_layer
--------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: warp_ctc_layer
:noindex:
nce_layer
-----------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
cbcd53af
...
...
@@ -112,6 +112,8 @@ __all__ = [
'priorbox_layer'
,
'spp_layer'
,
'pad_layer'
,
'eos_layer'
,
'layer_support'
,
]
...
...
@@ -708,6 +710,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self
.
size
=
ml
.
config
.
size
self
.
finalized
=
True
@
wrap_name_default
(
"mixed"
)
...
...
@@ -1287,6 +1290,12 @@ def last_seq(input,
"""
Get Last Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = last_seq(input=layer)
:param agg_level: Aggregated level
:param name: Layer name.
:type name: basestring
...
...
@@ -1325,6 +1334,12 @@ def first_seq(input,
"""
Get First Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = first_seq(input=layer)
:param agg_level: aggregation level
:param name: Layer name.
:type name: basestring
...
...
@@ -1425,7 +1440,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
.. code-block:: python
expand = repeat_layer(
layer,
4)
expand = repeat_layer(
input=layer, num_repeats=
4)
:param input: Input layer
:type input: LayerOutput
...
...
@@ -1797,6 +1812,12 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The example usage is:
.. code-block:: python
cos = cos_sim(a=layer1, b=layer2, size=3)
:param name: layer name
:type name: basestring
:param a: input layer a
...
...
@@ -1958,6 +1979,16 @@ def img_conv_layer(input,
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.
The example usage is:
.. code-block:: python
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
...
...
@@ -2097,6 +2128,34 @@ def img_pool_layer(input,
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
The example usage is:
.. code-block:: python
maxpool = img_pool_layer(input=conv,
pool_size=3,
pool_size_y=5,
num_channels=8,
stride=1,
stride_y=2,
padding=1,
padding_y=2,
pool_type=MaxPooling())
:param padding: pooling padding width.
:type padding: int
:param padding_y: pooling padding height. It's equal to padding by default.
...
...
@@ -2123,19 +2182,6 @@ def img_pool_layer(input,
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(ceil(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(floor(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
:type ceil_mode: bool
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -2197,6 +2243,15 @@ def spp_layer(input,
The details please refer to
`Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.
The example usage is:
.. code-block:: python
spp = spp_layer(input=data,
pyramid_height=2,
num_channels=16,
pool_type=MaxPooling())
:param name: layer name.
:type name: basestring
:param input: layer's input.
...
...
@@ -2285,6 +2340,12 @@ def img_cmrnorm_layer(input,
The details please refer to
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
The example usage is:
.. code-block:: python
norm = img_cmrnorm_layer(input=net, size=5)
:param name: layer name.
:type name: None|basestring
:param input: layer's input.
...
...
@@ -2340,6 +2401,12 @@ def batch_norm_layer(input,
The details of batch normalization please refer to this
`paper <http://arxiv.org/abs/1502.03167>`_.
The example usage is:
.. code-block:: python
norm = batch_norm_layer(input=net, act=ReluActivation())
:param name: layer name.
:type name: basestring
:param input: batch normalization input. Better be linear activation.
...
...
@@ -3903,13 +3970,13 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
.. code-block:: python
conv_shift = conv_shift_layer(
input=[layer1, layer2]
)
conv_shift = conv_shift_layer(
a=layer1, b=layer2
)
:param name: layer name
:type name: basestring
:param a: Input layer a.
:type a: LayerOutput
:param b: input layer b
:param b: input layer b
.
:type b: LayerOutput
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -4001,8 +4068,8 @@ def tensor_layer(a,
@
wrap_act_default
()
@
layer_support
()
def
selective_fc_layer
(
input
,
select
,
size
,
select
=
None
,
act
=
None
,
name
=
None
,
pass_generation
=
False
,
...
...
@@ -4029,6 +4096,7 @@ def selective_fc_layer(input,
:type input: LayerOutput|list|tuple
:param select: The select layer. The output of select layer should be a
sparse binary matrix, and treat as the mask of selective fc.
If is None, acts exactly like fc_layer.
:type select: LayerOutput
:param size: The layer dimension.
:type size: int
...
...
@@ -4257,7 +4325,7 @@ def block_expand_layer(input,
.. code-block:: python
block_expand = block_expand_layer(input,
block_expand = block_expand_layer(input
=layer
,
num_channels=128,
stride_x=1,
stride_y=1,
...
...
@@ -4461,7 +4529,7 @@ def warp_ctc_layer(input,
- You can set 'blank' to any value ranged in [0, num_classes], which
should be consistent as that used in your labels.
- As a native 'softmax' activation is interated to the warp-ctc library,
'linear' activation is expected instead in the 'input' layer.
'linear' activation is expected instead in the 'input' layer.
The simple usage:
...
...
@@ -4594,6 +4662,13 @@ def crf_decoding_layer(input,
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.
The simple usage:
.. code-block:: python
crf_decoding = crf_decoding_layer(input=input,
size=label_dim)
:param input: The first input layer.
:type input: LayerOutput
:param size: size of this layer.
...
...
python/paddle/v2/__init__.py
浏览文件 @
cbcd53af
...
...
@@ -22,11 +22,12 @@ import data_feeder
from
.
import
dataset
from
.
import
reader
import
attr
import
pooling
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
,
'data_feeder'
,
'dataset'
,
'reader'
'event'
,
'data_type'
,
'attr'
,
'
pooling'
,
'
data_feeder'
,
'dataset'
,
'reader'
]
...
...
python/paddle/v2/layer.py
浏览文件 @
cbcd53af
...
...
@@ -71,19 +71,37 @@ import collections
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'parse_network'
,
'data'
,
'fc'
,
'conv_shift'
,
'img_conv'
,
'img_pool'
,
'spp'
,
'maxout'
,
'img_cmrnorm'
,
'batch_norm'
,
'sum_to_one_norm'
,
'recurrent'
,
'lstmemory'
,
'grumemory'
,
'pool'
,
'last_seq'
,
'first_seq'
,
'concat'
,
'seq_concat'
,
'block_expand'
,
'expand'
,
'repeat'
,
'seq_reshape'
,
'addto'
,
'linear_comb'
,
'interpolation'
,
'bilinear_interp'
,
'power'
,
'scaling'
,
'slope_intercept'
,
'tensor'
,
'cos_sim'
,
'trans'
,
'max_id'
,
'sampling_id'
,
'pad'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'sum_cost'
,
'huber_cost'
,
'crf'
,
'crf_decoding'
,
'ctc'
,
'warp_ctc'
,
'nce'
,
'hsigmoid'
,
'eos'
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
__all__
+=
__projection_names__
__operator_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_operator'
),
dir
(
conf_helps
))
__all__
+=
__operator_names__
def
parse_network
(
*
outputs
):
"""
...
...
@@ -101,9 +119,8 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
):
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layers__
=
parent_layers
...
...
@@ -122,22 +139,25 @@ class Layer(object):
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
not
in
context
:
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
elif
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
,
parent_names
):
if
name_prefix
is
not
Non
e
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
def
__convert_to_v2__
(
method_name
,
parent_names
,
is_default_name
=
True
):
if
is_default_nam
e
:
wrapper
=
wrap_name_default
(
name_prefix
=
method_name
)
else
:
wrapper
=
None
class
V2LayerImpl
(
Layer
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
def
__init__
(
self
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
...
...
@@ -148,6 +168,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
name
=
kwargs
.
get
(
'name'
,
None
)
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
...
...
@@ -160,7 +181,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
getattr
(
conf_helps
,
method_name
)(
**
args
)
return
V2LayerImpl
...
...
@@ -191,67 +212,171 @@ class DataLayerV2(Layer):
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class
AddToSealedMixedLayerExceptionV2
(
Exception
):
pass
def
__init__
(
self
,
size
=
0
,
input
=
None
,
name
=
None
,
act
=
None
,
bias_attr
=
None
,
layer_attr
=
None
):
self
.
__method_name__
=
'mixed_layer'
self
.
finalized
=
False
self
.
__inputs__
=
[]
if
input
is
not
None
:
self
.
__inputs__
=
input
other_kwargs
=
dict
()
other_kwargs
[
'name'
]
=
name
other_kwargs
[
'size'
]
=
size
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
parent_layers
=
{
"input"
:
self
.
__inputs__
}
super
(
MixedLayerV2
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
def
__iadd__
(
self
,
other
):
if
not
self
.
finalized
:
self
.
__inputs__
.
append
(
other
)
return
self
else
:
raise
MixedLayerTypeV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__inputs__
)
==
0
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
self
.
finalized
=
True
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
**
args
)
@
wrap_name_default
(
"mixed"
)
@
wrap_act_default
(
act
=
activation
.
Linear
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
(
conf_helps
.
layers
.
ERROR_CLIPPING
,
conf_helps
.
layers
.
DROPOUT
)
def
mixed
(
size
=
0
,
name
=
None
,
input
=
None
,
act
=
None
,
bias_attr
=
False
,
layer_attr
=
None
):
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
'maxid_layer'
,
name_prefix
=
'maxid'
,
parent_names
=
[
'input'
])
classification_cost
=
__convert_to_v2__
(
'classification_cost'
,
name_prefix
=
'classification_cost'
,
parent_names
=
[
'input'
,
'label'
,
'weight'
])
regression_cost
=
__convert_to_v2__
(
'regression_cost'
,
name_prefix
=
'regression_cost'
,
parent_names
=
[
'input'
,
'label'
,
'weight'
])
cross_entropy_cost
=
__convert_to_v2__
(
'cross_entropy'
,
name_prefix
=
'cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
cross_entropy_with_selfnorm_cost
=
__convert_to_v2__
(
'cross_entropy_with_selfnorm'
,
name_prefix
=
'cross_entropy_with_selfnorm'
,
parent_names
=
[
'input'
,
'label'
])
multi_binary_label_cross_entropy_cost
=
__convert_to_v2__
(
'multi_binary_label_cross_entropy'
,
name_prefix
=
'multi_binary_label_cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
rank_cost
=
__convert_to_v2__
(
'rank_cost'
,
name_prefix
=
'rank_cost'
,
parent_names
=
[
'left'
,
'right'
,
'label'
,
'weight'
])
lambda_cost
=
__convert_to_v2__
(
'lambda_cost'
,
name_prefix
=
'lambda_cost'
,
parent_names
=
[
'input'
,
'score'
])
sum_cost
=
__convert_to_v2__
(
'sum_cost'
,
name_prefix
=
'sum_cost'
,
parent_names
=
[
'input'
])
huber_cost
=
__convert_to_v2__
(
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
maxid
=
max_id
(
input
=
inference
)
cost1
=
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
classification_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost3
=
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost4
=
cross_entropy_with_selfnorm_cost
(
input
=
inference
,
label
=
label
)
cost5
=
regression_cost
(
input
=
inference
,
label
=
label
)
cost6
=
regression_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost7
=
multi_binary_label_cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost8
=
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
sum_cost
(
input
=
inference
)
cost11
=
huber_cost
(
input
=
score
,
label
=
label
)
print
parse_network
(
cost1
,
cost2
)
print
parse_network
(
cost3
,
cost4
)
print
parse_network
(
cost5
,
cost6
)
print
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
print
parse_network
(
inference
,
maxid
)
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
layer_list
=
[
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
[
'fc'
,
'fc_layer'
,
[
'input'
]],
# conv layers
[
'conv_shift'
,
'conv_shift_layer'
,
[
'a'
,
'b'
]],
[
'img_conv'
,
'img_conv_layer'
,
[
'input'
]],
# image pooling layers
[
'img_pool'
,
'img_pool_layer'
,
[
'input'
]],
[
'spp'
,
'spp_layer'
,
[
'input'
]],
[
'maxout'
,
'maxout_layer'
,
[
'input'
]],
# norm layers
[
'img_cmrnorm'
,
'img_cmrnorm_layer'
,
[
'input'
]],
[
'batch_norm'
,
'batch_norm_layer'
,
[
'input'
]],
[
'sum_to_one_norm'
,
'sum_to_one_norm_layer'
,
[
'input'
]],
# recurrent layers
[
'recurrent'
,
'recurrent_layer'
,
[
'input'
]],
[
'lstmemory'
,
'lstmemory'
,
[
'input'
]],
[
'grumemory'
,
'grumemory'
,
[
'input'
]],
# aggregate layers
[
'pool'
,
'pooling_layer'
,
[
'input'
]],
[
'last_seq'
,
'last_seq'
,
[
'input'
]],
[
'first_seq'
,
'first_seq'
,
[
'input'
]],
[
'concat'
,
'concat_layer'
,
[
'input'
]],
[
'seq_concat'
,
'seq_concat_layer'
,
[
'a'
,
'b'
]],
# reshaping layers
[
'block_expand'
,
'block_expand_layer'
,
[
'input'
]],
[
'expand'
,
'expand_layer'
,
[
'input'
,
'expand_as'
]],
[
'repeat'
,
'repeat_layer'
,
[
'input'
]],
[
'rotate'
,
'rotate_layer'
,
[
'input'
]],
[
'seq_reshape'
,
'seq_reshape_layer'
,
[
'input'
]],
# math layers
[
'addto'
,
'addto_layer'
,
[
'input'
]],
[
'linear_comb'
,
'linear_comb_layer'
,
[
'weights'
,
'vectors'
]],
[
'interpolation'
,
'interpolation_layer'
,
[
'input'
,
'weight'
]],
[
'bilinear_interp'
,
'bilinear_interp_layer'
,
[
'input'
]],
[
'power'
,
'power_layer'
,
[
'input'
,
'weight'
]],
[
'scaling'
,
'scaling_layer'
,
[
'input'
,
'weight'
]],
[
'slope_intercept'
,
'slope_intercept_layer'
,
[
'input'
]],
[
'tensor'
,
'tensor_layer'
,
[
'a'
,
'b'
]],
[
'cos_sim'
,
'cos_sim'
,
[
'a'
,
'b'
]],
[
'trans'
,
'trans_layer'
,
[
'input'
]],
# sampling layers
[
'max_id'
,
'maxid_layer'
,
[
'input'
]],
[
'sampling_id'
,
'sampling_id_layer'
,
[
'input'
]],
# slicing and joining layers
[
'pad'
,
'pad_layer'
,
[
'input'
]],
# cost layers
[
'classification_cost'
,
'classification_cost'
,
[
'input'
,
'label'
,
'weight'
]
],
[
'regression_cost'
,
'regression_cost'
,
[
'input'
,
'label'
,
'weight'
]],
[
'cross_entropy_cost'
,
'cross_entropy'
,
[
'input'
,
'label'
]],
[
'cross_entropy_with_selfnorm_cost'
,
'cross_entropy_with_selfnorm'
,
[
'input'
,
'label'
]
],
[
'multi_binary_label_cross_entropy_cost'
,
'multi_binary_label_cross_entropy'
,
[
'input'
,
'label'
]
],
[
'rank_cost'
,
'rank_cost'
,
[
'left'
,
'right'
,
'label'
,
'weight'
]],
[
'lambda_cost'
,
'lambda_cost'
,
[
'input'
,
'score'
]],
[
'sum_cost'
,
'sum_cost'
,
[
'input'
]],
[
'huber_cost'
,
'huber_cost'
,
[
'input'
,
'label'
]],
[
'crf'
,
'crf_layer'
,
[
'input'
,
'label'
]],
[
'crf_decoding'
,
'crf_decoding_layer'
,
[
'input'
]],
[
'ctc'
,
'ctc_layer'
,
[
'input'
,
'label'
]],
[
'warp_ctc'
,
'warp_ctc_layer'
,
[
'input'
,
'label'
]],
[
'nce'
,
'nce_layer'
,
[
'input'
,
'label'
]],
[
'hsigmoid'
,
'hsigmoid'
,
[
'input'
,
'label'
]],
# check layers
[
'eos'
,
'eos_layer'
,
[
'input'
]]
]
for
l
in
layer_list
:
globals
()[
l
[
0
]]
=
__convert_to_v2__
(
l
[
1
],
l
[
2
])
# convert projection
for
prj
in
__projection_names__
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
],
is_default_name
=
False
)
# convert operator
operator_list
=
[
# [V1_method_name, parent_names],
[
'dotmul_operator'
,
[
'a'
,
'b'
]],
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
],
is_default_name
=
False
)
python/paddle/v2/pooling.py
0 → 100644
浏览文件 @
cbcd53af
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers.poolings
import
*
__all__
=
[
"Max"
,
"CudnnMax"
,
"Avg"
,
"CudnnAvg"
,
"Sum"
,
"SquareRootN"
]
Max
=
MaxPooling
CudnnMax
=
CudnnMaxPooling
Avg
=
AvgPooling
CudnnAvg
=
CudnnAvgPooling
Sum
=
SumPooling
SquareRootN
=
SquareRootNPooling
python/paddle/v2/tests/test_layer.py
浏览文件 @
cbcd53af
...
...
@@ -19,18 +19,106 @@ import paddle.v2.activation as activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.pooling
as
pooling
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
128
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
layer
.
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
layer
.
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
conv
=
layer
.
img_conv
(
input
=
pixel
,
filter_size
=
1
,
filter_size_y
=
1
,
num_channels
=
8
,
num_filters
=
16
,
act
=
activation
.
Linear
())
class
ImageLayerTest
(
unittest
.
TestCase
):
def
test_conv_layer
(
self
):
conv_shift
=
layer
.
conv_shift
(
a
=
pixel
,
b
=
score
)
print
layer
.
parse_network
(
conv
,
conv_shift
)
def
test_pooling_layer
(
self
):
maxpool
=
layer
.
img_pool
(
input
=
conv
,
pool_size
=
2
,
num_channels
=
16
,
padding
=
1
,
pool_type
=
pooling
.
Max
())
spp
=
layer
.
spp
(
input
=
conv
,
pyramid_height
=
2
,
num_channels
=
16
,
pool_type
=
pooling
.
Max
())
maxout
=
layer
.
maxout
(
input
=
conv
,
num_channels
=
16
,
groups
=
4
)
print
layer
.
parse_network
(
maxpool
,
spp
,
maxout
)
def
test_norm_layer
(
self
):
norm1
=
layer
.
img_cmrnorm
(
input
=
conv
,
size
=
5
)
norm2
=
layer
.
batch_norm
(
input
=
conv
)
norm3
=
layer
.
sum_to_one_norm
(
input
=
conv
)
print
layer
.
parse_network
(
norm1
,
norm2
,
norm3
)
class
AggregateLayerTest
(
unittest
.
TestCase
):
def
test_aggregate_layer
(
self
):
pool
=
layer
.
pool
(
input
=
pixel
,
pooling_type
=
pooling
.
Avg
(),
agg_level
=
layer
.
AggregateLevel
.
EACH_SEQUENCE
)
last_seq
=
layer
.
last_seq
(
input
=
pixel
)
first_seq
=
layer
.
first_seq
(
input
=
pixel
)
concat
=
layer
.
concat
(
input
=
[
last_seq
,
first_seq
])
seq_concat
=
layer
.
seq_concat
(
a
=
last_seq
,
b
=
first_seq
)
print
layer
.
parse_network
(
pool
,
last_seq
,
first_seq
,
concat
,
seq_concat
)
class
MathLayerTest
(
unittest
.
TestCase
):
def
test_math_layer
(
self
):
addto
=
layer
.
addto
(
input
=
[
pixel
,
pixel
])
linear_comb
=
layer
.
linear_comb
(
weights
=
weight
,
vectors
=
hidden
,
size
=
10
)
interpolation
=
layer
.
interpolation
(
input
=
[
hidden
,
hidden
],
weight
=
score
)
bilinear
=
layer
.
bilinear_interp
(
input
=
conv
,
out_size_x
=
4
,
out_size_y
=
4
)
power
=
layer
.
power
(
input
=
pixel
,
weight
=
score
)
scaling
=
layer
.
scaling
(
input
=
pixel
,
weight
=
score
)
slope
=
layer
.
slope_intercept
(
input
=
pixel
)
tensor
=
layer
.
tensor
(
a
=
pixel
,
b
=
pixel
,
size
=
1000
)
cos_sim
=
layer
.
cos_sim
(
a
=
pixel
,
b
=
pixel
)
trans
=
layer
.
trans
(
input
=
tensor
)
print
layer
.
parse_network
(
addto
,
linear_comb
,
interpolation
,
power
,
scaling
,
slope
,
tensor
,
cos_sim
,
trans
)
class
ReshapeLayerTest
(
unittest
.
TestCase
):
def
test_reshape_layer
(
self
):
block_expand
=
layer
.
block_expand
(
input
=
conv
,
num_channels
=
4
,
stride_x
=
1
,
block_x
=
1
)
expand
=
layer
.
expand
(
input
=
weight
,
expand_as
=
pixel
,
expand_level
=
layer
.
ExpandLevel
.
FROM_TIMESTEP
)
repeat
=
layer
.
repeat
(
input
=
pixel
,
num_repeats
=
4
)
reshape
=
layer
.
seq_reshape
(
input
=
pixel
,
reshape_size
=
4
)
rotate
=
layer
.
rotate
(
input
=
pixel
,
height
=
16
,
width
=
49
)
print
layer
.
parse_network
(
block_expand
,
expand
,
repeat
,
reshape
,
rotate
)
class
RecurrentLayerTest
(
unittest
.
TestCase
):
def
test_recurrent_layer
(
self
):
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value
(
12
))
recurrent
=
layer
.
recurrent
(
input
=
word
)
lstm
=
layer
.
lstmemory
(
input
=
word
)
gru
=
layer
.
grumemory
(
input
=
word
)
print
layer
.
parse_network
(
recurrent
,
lstm
,
gru
)
class
CostLayerTest
(
unittest
.
TestCase
):
...
...
@@ -51,12 +139,120 @@ class CostLayerTest(unittest.TestCase):
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
print
dir
(
layer
)
layer
.
parse_network
(
cost1
,
cost2
)
print
dir
(
layer
)
#print layer.parse_network(cost3, cost4)
#print layer.parse_network(cost5, cost6)
#print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
print
layer
.
parse_network
(
cost1
,
cost2
)
print
layer
.
parse_network
(
cost3
,
cost4
)
print
layer
.
parse_network
(
cost5
,
cost6
)
print
layer
.
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
crf
=
layer
.
crf
(
input
=
inference
,
label
=
label
)
crf_decoding
=
layer
.
crf_decoding
(
input
=
inference
,
size
=
3
)
ctc
=
layer
.
ctc
(
input
=
inference
,
label
=
label
)
warp_ctc
=
layer
.
warp_ctc
(
input
=
pixel
,
label
=
label
)
nce
=
layer
.
nce
(
input
=
inference
,
label
=
label
,
num_classes
=
3
)
hsigmoid
=
layer
.
hsigmoid
(
input
=
inference
,
label
=
label
,
num_classes
=
3
)
print
layer
.
parse_network
(
crf
,
crf_decoding
,
ctc
,
warp_ctc
,
nce
,
hsigmoid
)
class
OtherLayerTest
(
unittest
.
TestCase
):
def
test_sampling_layer
(
self
):
maxid
=
layer
.
max_id
(
input
=
inference
)
sampling_id
=
layer
.
sampling_id
(
input
=
inference
)
eos
=
layer
.
eos
(
input
=
maxid
,
eos_id
=
5
)
print
layer
.
parse_network
(
maxid
,
sampling_id
,
eos
)
def
test_slicing_joining_layer
(
self
):
pad
=
layer
.
pad
(
input
=
conv
,
pad_c
=
[
2
,
3
],
pad_h
=
[
1
,
2
],
pad_w
=
[
3
,
1
])
print
layer
.
parse_network
(
pad
)
class
ProjOpTest
(
unittest
.
TestCase
):
def
test_projection
(
self
):
input
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
fc0
=
layer
.
fc
(
input
=
input
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
input
,
size
=
200
,
act
=
activation
.
Sigmoid
())
mixed0
=
layer
.
mixed
(
size
=
256
,
input
=
[
layer
.
full_matrix_projection
(
input
=
fc0
),
layer
.
full_matrix_projection
(
input
=
fc1
)
])
with
layer
.
mixed
(
size
=
200
)
as
mixed1
:
mixed1
+=
layer
.
full_matrix_projection
(
input
=
fc0
)
mixed1
+=
layer
.
identity_projection
(
input
=
fc1
)
table
=
layer
.
table_projection
(
input
=
word
)
emb0
=
layer
.
mixed
(
size
=
512
,
input
=
table
)
with
layer
.
mixed
(
size
=
512
)
as
emb1
:
emb1
+=
table
scale
=
layer
.
scaling_projection
(
input
=
fc0
)
scale0
=
layer
.
mixed
(
size
=
100
,
input
=
scale
)
with
layer
.
mixed
(
size
=
100
)
as
scale1
:
scale1
+=
scale
dotmul
=
layer
.
dotmul_projection
(
input
=
fc0
)
dotmul0
=
layer
.
mixed
(
size
=
100
,
input
=
dotmul
)
with
layer
.
mixed
(
size
=
100
)
as
dotmul1
:
dotmul1
+=
dotmul
context
=
layer
.
context_projection
(
input
=
fc0
,
context_len
=
5
)
context0
=
layer
.
mixed
(
size
=
100
,
input
=
context
)
with
layer
.
mixed
(
size
=
100
)
as
context1
:
context1
+=
context
conv
=
layer
.
conv_projection
(
input
=
input
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
layer
.
mixed
(
input
=
conv
,
bias_attr
=
True
)
with
layer
.
mixed
(
bias_attr
=
True
)
as
conv1
:
conv1
+=
conv
print
layer
.
parse_network
(
mixed0
)
print
layer
.
parse_network
(
mixed1
)
print
layer
.
parse_network
(
emb0
)
print
layer
.
parse_network
(
emb1
)
print
layer
.
parse_network
(
scale0
)
print
layer
.
parse_network
(
scale1
)
print
layer
.
parse_network
(
dotmul0
)
print
layer
.
parse_network
(
dotmul1
)
print
layer
.
parse_network
(
conv0
)
print
layer
.
parse_network
(
conv1
)
def
test_operator
(
self
):
ipt0
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
dense_vector
(
128
))
fc0
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
fc1
=
layer
.
fc
(
input
=
ipt0
,
size
=
100
,
act
=
activation
.
Sigmoid
())
dotmul_op
=
layer
.
dotmul_operator
(
a
=
fc0
,
b
=
fc1
)
dotmul0
=
layer
.
mixed
(
input
=
dotmul_op
)
with
layer
.
mixed
()
as
dotmul1
:
dotmul1
+=
dotmul_op
conv
=
layer
.
conv_operator
(
img
=
ipt0
,
filter
=
ipt1
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
layer
.
mixed
(
input
=
conv
)
with
layer
.
mixed
()
as
conv1
:
conv1
+=
conv
print
layer
.
parse_network
(
dotmul0
)
print
layer
.
parse_network
(
dotmul1
)
print
layer
.
parse_network
(
conv0
)
print
layer
.
parse_network
(
conv1
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录