Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
cb1deae4
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cb1deae4
编写于
11月 06, 2021
作者:
W
wangxinxin08
提交者:
GitHub
11月 06, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reference of some code and remove some code (#4468)
上级
f7df1eb9
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
73 addition
and
345 deletion
+73
-345
docs/tutorials/PrepareDataSet.md
docs/tutorials/PrepareDataSet.md
+1
-3
ppdet/data/transform/op_helper.py
ppdet/data/transform/op_helper.py
+0
-59
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+8
-1
ppdet/ext_op/rbox_iou_op.cc
ppdet/ext_op/rbox_iou_op.cc
+15
-12
ppdet/ext_op/rbox_iou_op.cu
ppdet/ext_op/rbox_iou_op.cu
+15
-12
ppdet/ext_op/rbox_iou_op.h
ppdet/ext_op/rbox_iou_op.h
+15
-12
ppdet/modeling/heads/s2anet_head.py
ppdet/modeling/heads/s2anet_head.py
+7
-2
ppdet/modeling/necks/yolo_fpn.py
ppdet/modeling/necks/yolo_fpn.py
+1
-1
static/configs/yolov4/README.md
static/configs/yolov4/README.md
+1
-3
static/docs/tutorials/Custom_DataSet.md
static/docs/tutorials/Custom_DataSet.md
+1
-3
static/tools/anchor_cluster.py
static/tools/anchor_cluster.py
+4
-118
tools/anchor_cluster.py
tools/anchor_cluster.py
+5
-119
未找到文件。
docs/tutorials/PrepareDataSet.md
浏览文件 @
cb1deae4
...
...
@@ -436,7 +436,5 @@ python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2
/v5
的聚类算法 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
ppdet/data/transform/op_helper.py
浏览文件 @
cb1deae4
...
...
@@ -464,65 +464,6 @@ def gaussian2D(shape, sigma_x=1, sigma_y=1):
return
h
def
transform_bbox
(
sample
,
M
,
w
,
h
,
area_thr
=
0.25
,
wh_thr
=
2
,
ar_thr
=
20
,
perspective
=
False
):
"""
transfrom bbox according to tranformation matrix M,
refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# rotate bbox
n
=
len
(
bbox
)
xy
=
np
.
ones
((
n
*
4
,
3
),
dtype
=
np
.
float32
)
xy
[:,
:
2
]
=
bbox
[:,
[
0
,
1
,
2
,
3
,
0
,
3
,
2
,
1
]].
reshape
(
n
*
4
,
2
)
# xy = xy @ M.T
xy
=
np
.
matmul
(
xy
,
M
.
T
)
if
perspective
:
xy
=
(
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]).
reshape
(
n
,
8
)
else
:
xy
=
xy
[:,
:
2
].
reshape
(
n
,
8
)
# get new bboxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
bbox
=
np
.
concatenate
(
(
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
))).
reshape
(
4
,
n
).
T
# clip boxes
mask
=
filter_bbox
(
bbox
,
w
,
h
,
area_thr
)
sample
[
'gt_bbox'
]
=
bbox
[
mask
]
sample
[
'gt_class'
]
=
sample
[
'gt_class'
][
mask
]
if
'is_crowd'
in
sample
:
sample
[
'is_crowd'
]
=
sample
[
'is_crowd'
][
mask
]
if
'difficult'
in
sample
:
sample
[
'difficult'
]
=
sample
[
'difficult'
][
mask
]
return
sample
def
filter_bbox
(
bbox
,
w
,
h
,
area_thr
=
0.25
,
wh_thr
=
2
,
ar_thr
=
20
):
"""
filter bbox, refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
# clip boxes
area1
=
(
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]).
prod
(
1
)
bbox
[:,
[
0
,
2
]]
=
bbox
[:,
[
0
,
2
]].
clip
(
0
,
w
)
bbox
[:,
[
1
,
3
]]
=
bbox
[:,
[
1
,
3
]].
clip
(
0
,
h
)
# compute
area2
=
(
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]).
prod
(
1
)
area_ratio
=
area2
/
(
area1
+
1e-16
)
wh
=
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]
ar_ratio
=
np
.
maximum
(
wh
[:,
1
]
/
(
wh
[:,
0
]
+
1e-16
),
wh
[:,
0
]
/
(
wh
[:,
1
]
+
1e-16
))
mask
=
(
area_ratio
>
area_thr
)
&
(
(
wh
>
wh_thr
).
all
(
1
))
&
(
ar_ratio
<
ar_thr
)
return
mask
def
draw_umich_gaussian
(
heatmap
,
center
,
radius
,
k
=
1
):
"""
draw_umich_gaussian, refer to https://github.com/xingyizhou/CenterNet/blob/master/src/lib/utils/image.py#L126
...
...
ppdet/data/transform/operators.py
浏览文件 @
cb1deae4
...
...
@@ -48,7 +48,7 @@ from .op_helper import (satisfy_sample_constraint, filter_and_process,
generate_sample_bbox
,
clip_bbox
,
data_anchor_sampling
,
satisfy_sample_constraint_coverage
,
crop_image_sampling
,
generate_sample_bbox_square
,
bbox_area_sampling
,
is_poly
,
transform_bbox
,
get_border
)
is_poly
,
get_border
)
from
ppdet.utils.logger
import
setup_logger
from
ppdet.modeling.keypoint_utils
import
get_affine_transform
,
affine_transform
...
...
@@ -2476,6 +2476,9 @@ class RandomSelect(BaseOperator):
"""
Randomly choose a transformation between transforms1 and transforms2,
and the probability of choosing transforms1 is p.
The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py
"""
def
__init__
(
self
,
transforms1
,
transforms2
,
p
=
0.5
):
...
...
@@ -2833,6 +2836,10 @@ class WarpAffine(BaseOperator):
shift
=
0.1
):
"""WarpAffine
Warp affine the image
The code is based on https://github.com/xingyizhou/CenterNet/blob/master/src/lib/datasets/sample/ctdet.py
"""
super
(
WarpAffine
,
self
).
__init__
()
self
.
keep_res
=
keep_res
...
...
ppdet/ext_op/rbox_iou_op.cc
浏览文件 @
cb1deae4
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
#include "rbox_iou_op.h"
#include "paddle/extension.h"
...
...
ppdet/ext_op/rbox_iou_op.cu
浏览文件 @
cb1deae4
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
#include "rbox_iou_op.h"
#include "paddle/extension.h"
...
...
ppdet/ext_op/rbox_iou_op.h
浏览文件 @
cb1deae4
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
#pragma once
...
...
ppdet/modeling/heads/s2anet_head.py
浏览文件 @
cb1deae4
...
...
@@ -11,6 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/models/anchor_heads_rotated/s2anet_head.py
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
...
...
@@ -625,7 +628,8 @@ class S2ANetHead(nn.Layer):
fam_bbox_total
=
self
.
gwd_loss
(
fam_bbox_decode
,
bbox_gt_bboxes_level
)
fam_bbox_total
=
fam_bbox_total
*
feat_bbox_weights
fam_bbox_total
=
paddle
.
sum
(
fam_bbox_total
)
/
num_total_samples
fam_bbox_total
=
paddle
.
sum
(
fam_bbox_total
)
/
num_total_samples
fam_bbox_losses
.
append
(
fam_bbox_total
)
st_idx
+=
feat_anchor_num
...
...
@@ -739,7 +743,8 @@ class S2ANetHead(nn.Layer):
odm_bbox_total
=
self
.
gwd_loss
(
odm_bbox_decode
,
bbox_gt_bboxes_level
)
odm_bbox_total
=
odm_bbox_total
*
feat_bbox_weights
odm_bbox_total
=
paddle
.
sum
(
odm_bbox_total
)
/
num_total_samples
odm_bbox_total
=
paddle
.
sum
(
odm_bbox_total
)
/
num_total_samples
odm_bbox_losses
.
append
(
odm_bbox_total
)
st_idx
+=
feat_anchor_num
...
...
ppdet/modeling/necks/yolo_fpn.py
浏览文件 @
cb1deae4
...
...
@@ -180,7 +180,7 @@ class CoordConv(nn.Layer):
name
=
''
,
data_format
=
'NCHW'
):
"""
CoordConv layer
CoordConv layer
, see https://arxiv.org/abs/1807.03247
Args:
ch_in (int): input channel
...
...
static/configs/yolov4/README.md
浏览文件 @
cb1deae4
...
...
@@ -31,10 +31,8 @@ python tools/anchor_cluster.py -c ${config} -m ${method} -s ${size}
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2
/v5
的聚类算法 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
## 模型库
下表中展示了当前支持的网络结构。
...
...
static/docs/tutorials/Custom_DataSet.md
浏览文件 @
cb1deae4
...
...
@@ -139,10 +139,8 @@ python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2
/v5
的聚类算法 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
## 4.修改参数配置
...
...
static/tools/anchor_cluster.py
浏览文件 @
cb1deae4
...
...
@@ -126,8 +126,7 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
"""
YOLOv2 Anchor Cluster
Reference:
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
The code is based on https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
Args:
n (int): number of clusters
...
...
@@ -196,103 +195,6 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
return
centers
class
YOLOv5AnchorCluster
(
BaseAnchorCluster
):
def
__init__
(
self
,
n
,
dataset
,
size
,
cache_path
,
cache
,
iters
=
300
,
gen_iters
=
1000
,
thresh
=
0.25
,
verbose
=
True
):
super
(
YOLOv5AnchorCluster
,
self
).
__init__
(
n
,
cache_path
,
cache
,
verbose
=
verbose
)
"""
YOLOv5 Anchor Cluster
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): iters of kmeans algorithm
gen_iters (int): iters of genetic algorithm
threshold (float): anchor scale threshold
verbose (bool): whether print results
"""
self
.
dataset
=
dataset
self
.
size
=
size
self
.
iters
=
iters
self
.
gen_iters
=
gen_iters
self
.
thresh
=
thresh
def
print_result
(
self
,
centers
):
whs
=
self
.
whs
centers
=
centers
[
np
.
argsort
(
centers
.
prod
(
1
))]
x
,
best
=
self
.
metric
(
whs
,
centers
)
bpr
,
aat
=
(
best
>
self
.
thresh
).
mean
(),
(
x
>
self
.
thresh
).
mean
()
*
self
.
n
logger
.
info
(
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr'
%
(
self
.
thresh
,
bpr
,
aat
))
logger
.
info
(
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
%
(
self
.
n
,
self
.
size
,
x
.
mean
(),
best
.
mean
(),
x
[
x
>
self
.
thresh
].
mean
()))
logger
.
info
(
'%d anchor cluster result: [w, h]'
%
self
.
n
)
for
w
,
h
in
centers
:
logger
.
info
(
'[%d, %d]'
%
(
round
(
w
),
round
(
h
)))
def
metric
(
self
,
whs
,
centers
):
r
=
whs
[:,
None
]
/
centers
[
None
]
x
=
np
.
minimum
(
r
,
1.
/
r
).
min
(
2
)
return
x
,
x
.
max
(
1
)
def
fitness
(
self
,
whs
,
centers
):
_
,
best
=
self
.
metric
(
whs
,
centers
)
return
(
best
*
(
best
>
self
.
thresh
)).
mean
()
def
calc_anchors
(
self
):
self
.
whs
=
self
.
whs
*
self
.
shapes
/
self
.
shapes
.
max
(
1
,
keepdims
=
True
)
*
np
.
array
([
self
.
size
])
wh0
=
self
.
whs
i
=
(
wh0
<
3.0
).
any
(
1
).
sum
()
if
i
:
logger
.
warning
(
'Extremely small objects found. %d of %d'
'labels are < 3 pixels in width or height'
%
(
i
,
len
(
wh0
)))
wh
=
wh0
[(
wh0
>=
2.0
).
any
(
1
)]
logger
.
info
(
'Running kmeans for %g anchors on %g points...'
%
(
self
.
n
,
len
(
wh
)))
s
=
wh
.
std
(
0
)
centers
,
dist
=
kmeans
(
wh
/
s
,
self
.
n
,
iter
=
self
.
iters
)
centers
*=
s
f
,
sh
,
mp
,
s
=
self
.
fitness
(
wh
,
centers
),
centers
.
shape
,
0.9
,
0.1
pbar
=
tqdm
(
range
(
self
.
gen_iters
),
desc
=
'Evolving anchors with Genetic Algorithm'
)
for
_
in
pbar
:
v
=
np
.
ones
(
sh
)
while
(
v
==
1
).
all
():
v
=
((
np
.
random
.
random
(
sh
)
<
mp
)
*
np
.
random
.
random
()
*
np
.
random
.
randn
(
*
sh
)
*
s
+
1
).
clip
(
0.3
,
3.0
)
new_centers
=
(
centers
.
copy
()
*
v
).
clip
(
min
=
2.0
)
new_f
=
self
.
fitness
(
wh
,
new_centers
)
if
new_f
>
f
:
f
,
centers
=
new_f
,
new_centers
.
copy
()
pbar
.
desc
=
'Evolving anchors with Genetic Algorithm: fitness = %.4f'
%
f
return
centers
def
main
():
parser
=
ArgsParser
()
parser
.
add_argument
(
...
...
@@ -303,18 +205,6 @@ def main():
default
=
1000
,
type
=
int
,
help
=
'num of iterations for kmeans'
)
parser
.
add_argument
(
'--gen_iters'
,
'-gi'
,
default
=
1000
,
type
=
int
,
help
=
'num of iterations for genetic algorithm'
)
parser
.
add_argument
(
'--thresh'
,
'-t'
,
default
=
0.25
,
type
=
float
,
help
=
'anchor scale threshold'
)
parser
.
add_argument
(
'--verbose'
,
'-v'
,
default
=
True
,
type
=
bool
,
help
=
'whether print result'
)
parser
.
add_argument
(
...
...
@@ -328,7 +218,7 @@ def main():
'-m'
,
default
=
'v2'
,
type
=
str
,
help
=
'cluster method,
[v2, v5] are
supported now'
)
help
=
'cluster method,
v2 is only
supported now'
)
parser
.
add_argument
(
'--cache_path'
,
default
=
'cache'
,
type
=
str
,
help
=
'cache path'
)
parser
.
add_argument
(
...
...
@@ -353,18 +243,14 @@ def main():
size
=
int
(
FLAGS
.
size
)
size
=
[
size
,
size
]
elif
'image_shape'
in
cfg
[
'T
rain
Reader'
][
'inputs_def'
]:
size
=
cfg
[
'T
rain
Reader'
][
'inputs_def'
][
'image_shape'
][
1
:]
elif
'image_shape'
in
cfg
[
'T
est
Reader'
][
'inputs_def'
]:
size
=
cfg
[
'T
est
Reader'
][
'inputs_def'
][
'image_shape'
][
1
:]
else
:
raise
ValueError
(
'size is not specified'
)
if
FLAGS
.
method
==
'v2'
:
cluster
=
YOLOv2AnchorCluster
(
FLAGS
.
n
,
dataset
,
size
,
FLAGS
.
cache_path
,
FLAGS
.
cache
,
FLAGS
.
iters
,
FLAGS
.
verbose
)
elif
FLAGS
.
method
==
'v5'
:
cluster
=
YOLOv5AnchorCluster
(
FLAGS
.
n
,
dataset
,
size
,
FLAGS
.
cache_path
,
FLAGS
.
cache
,
FLAGS
.
iters
,
FLAGS
.
gen_iters
,
FLAGS
.
thresh
,
FLAGS
.
verbose
)
else
:
raise
ValueError
(
'cluster method: %s is not supported'
%
FLAGS
.
method
)
...
...
tools/anchor_cluster.py
浏览文件 @
cb1deae4
...
...
@@ -111,8 +111,7 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
"""
YOLOv2 Anchor Cluster
Reference:
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
The code is based on https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
Args:
n (int): number of clusters
...
...
@@ -182,103 +181,6 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
return
centers
class
YOLOv5AnchorCluster
(
BaseAnchorCluster
):
def
__init__
(
self
,
n
,
dataset
,
size
,
cache_path
,
cache
,
iters
=
300
,
gen_iters
=
1000
,
thresh
=
0.25
,
verbose
=
True
):
super
(
YOLOv5AnchorCluster
,
self
).
__init__
(
n
,
cache_path
,
cache
,
verbose
=
verbose
)
"""
YOLOv5 Anchor Cluster
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): iters of kmeans algorithm
gen_iters (int): iters of genetic algorithm
threshold (float): anchor scale threshold
verbose (bool): whether print results
"""
self
.
dataset
=
dataset
self
.
size
=
size
self
.
iters
=
iters
self
.
gen_iters
=
gen_iters
self
.
thresh
=
thresh
def
print_result
(
self
,
centers
):
whs
=
self
.
whs
centers
=
centers
[
np
.
argsort
(
centers
.
prod
(
1
))]
x
,
best
=
self
.
metric
(
whs
,
centers
)
bpr
,
aat
=
(
best
>
self
.
thresh
).
mean
(),
(
x
>
self
.
thresh
).
mean
()
*
self
.
n
logger
.
info
(
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr'
%
(
self
.
thresh
,
bpr
,
aat
))
logger
.
info
(
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
%
(
self
.
n
,
self
.
size
,
x
.
mean
(),
best
.
mean
(),
x
[
x
>
self
.
thresh
].
mean
()))
logger
.
info
(
'%d anchor cluster result: [w, h]'
%
self
.
n
)
for
w
,
h
in
centers
:
logger
.
info
(
'[%d, %d]'
%
(
round
(
w
),
round
(
h
)))
def
metric
(
self
,
whs
,
centers
):
r
=
whs
[:,
None
]
/
centers
[
None
]
x
=
np
.
minimum
(
r
,
1.
/
r
).
min
(
2
)
return
x
,
x
.
max
(
1
)
def
fitness
(
self
,
whs
,
centers
):
_
,
best
=
self
.
metric
(
whs
,
centers
)
return
(
best
*
(
best
>
self
.
thresh
)).
mean
()
def
calc_anchors
(
self
):
self
.
whs
=
self
.
whs
*
self
.
shapes
/
self
.
shapes
.
max
(
1
,
keepdims
=
True
)
*
np
.
array
([
self
.
size
])
wh0
=
self
.
whs
i
=
(
wh0
<
3.0
).
any
(
1
).
sum
()
if
i
:
logger
.
warning
(
'Extremely small objects found. %d of %d'
'labels are < 3 pixels in width or height'
%
(
i
,
len
(
wh0
)))
wh
=
wh0
[(
wh0
>=
2.0
).
any
(
1
)]
logger
.
info
(
'Running kmeans for %g anchors on %g points...'
%
(
self
.
n
,
len
(
wh
)))
s
=
wh
.
std
(
0
)
centers
,
dist
=
kmeans
(
wh
/
s
,
self
.
n
,
iter
=
self
.
iters
)
centers
*=
s
f
,
sh
,
mp
,
s
=
self
.
fitness
(
wh
,
centers
),
centers
.
shape
,
0.9
,
0.1
pbar
=
tqdm
(
range
(
self
.
gen_iters
),
desc
=
'Evolving anchors with Genetic Algorithm'
)
for
_
in
pbar
:
v
=
np
.
ones
(
sh
)
while
(
v
==
1
).
all
():
v
=
((
np
.
random
.
random
(
sh
)
<
mp
)
*
np
.
random
.
random
()
*
np
.
random
.
randn
(
*
sh
)
*
s
+
1
).
clip
(
0.3
,
3.0
)
new_centers
=
(
centers
.
copy
()
*
v
).
clip
(
min
=
2.0
)
new_f
=
self
.
fitness
(
wh
,
new_centers
)
if
new_f
>
f
:
f
,
centers
=
new_f
,
new_centers
.
copy
()
pbar
.
desc
=
'Evolving anchors with Genetic Algorithm: fitness = %.4f'
%
f
return
centers
def
main
():
parser
=
ArgsParser
()
parser
.
add_argument
(
...
...
@@ -289,18 +191,6 @@ def main():
default
=
1000
,
type
=
int
,
help
=
'num of iterations for kmeans'
)
parser
.
add_argument
(
'--gen_iters'
,
'-gi'
,
default
=
1000
,
type
=
int
,
help
=
'num of iterations for genetic algorithm'
)
parser
.
add_argument
(
'--thresh'
,
'-t'
,
default
=
0.25
,
type
=
float
,
help
=
'anchor scale threshold'
)
parser
.
add_argument
(
'--verbose'
,
'-v'
,
default
=
True
,
type
=
bool
,
help
=
'whether print result'
)
parser
.
add_argument
(
...
...
@@ -314,7 +204,7 @@ def main():
'-m'
,
default
=
'v2'
,
type
=
str
,
help
=
'cluster method,
[v2, v5] are
supported now'
)
help
=
'cluster method,
v2 is only
supported now'
)
parser
.
add_argument
(
'--cache_path'
,
default
=
'cache'
,
type
=
str
,
help
=
'cache path'
)
parser
.
add_argument
(
...
...
@@ -338,19 +228,15 @@ def main():
else
:
size
=
int
(
FLAGS
.
size
)
size
=
[
size
,
size
]
elif
'inputs_def'
in
cfg
[
'T
rain
Reader'
]
and
'image_shape'
in
cfg
[
'T
rain
Reader'
][
'inputs_def'
]:
size
=
cfg
[
'T
rain
Reader'
][
'inputs_def'
][
'image_shape'
][
1
:]
elif
'inputs_def'
in
cfg
[
'T
est
Reader'
]
and
'image_shape'
in
cfg
[
'T
est
Reader'
][
'inputs_def'
]:
size
=
cfg
[
'T
est
Reader'
][
'inputs_def'
][
'image_shape'
][
1
:]
else
:
raise
ValueError
(
'size is not specified'
)
if
FLAGS
.
method
==
'v2'
:
cluster
=
YOLOv2AnchorCluster
(
FLAGS
.
n
,
dataset
,
size
,
FLAGS
.
cache_path
,
FLAGS
.
cache
,
FLAGS
.
iters
,
FLAGS
.
verbose
)
elif
FLAGS
.
method
==
'v5'
:
cluster
=
YOLOv5AnchorCluster
(
FLAGS
.
n
,
dataset
,
size
,
FLAGS
.
cache_path
,
FLAGS
.
cache
,
FLAGS
.
iters
,
FLAGS
.
gen_iters
,
FLAGS
.
thresh
,
FLAGS
.
verbose
)
else
:
raise
ValueError
(
'cluster method: %s is not supported'
%
FLAGS
.
method
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录