未验证 提交 cb1deae4 编写于 作者: W wangxinxin08 提交者: GitHub

add reference of some code and remove some code (#4468)

上级 f7df1eb9
......@@ -436,7 +436,5 @@ python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2/v5的聚类算法 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
......@@ -464,65 +464,6 @@ def gaussian2D(shape, sigma_x=1, sigma_y=1):
return h
def transform_bbox(sample,
M,
w,
h,
area_thr=0.25,
wh_thr=2,
ar_thr=20,
perspective=False):
"""
transfrom bbox according to tranformation matrix M,
refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
bbox = sample['gt_bbox']
label = sample['gt_class']
# rotate bbox
n = len(bbox)
xy = np.ones((n * 4, 3), dtype=np.float32)
xy[:, :2] = bbox[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)
# xy = xy @ M.T
xy = np.matmul(xy, M.T)
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)
else:
xy = xy[:, :2].reshape(n, 8)
# get new bboxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
bbox = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
mask = filter_bbox(bbox, w, h, area_thr)
sample['gt_bbox'] = bbox[mask]
sample['gt_class'] = sample['gt_class'][mask]
if 'is_crowd' in sample:
sample['is_crowd'] = sample['is_crowd'][mask]
if 'difficult' in sample:
sample['difficult'] = sample['difficult'][mask]
return sample
def filter_bbox(bbox, w, h, area_thr=0.25, wh_thr=2, ar_thr=20):
"""
filter bbox, refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
# clip boxes
area1 = (bbox[:, 2:4] - bbox[:, 0:2]).prod(1)
bbox[:, [0, 2]] = bbox[:, [0, 2]].clip(0, w)
bbox[:, [1, 3]] = bbox[:, [1, 3]].clip(0, h)
# compute
area2 = (bbox[:, 2:4] - bbox[:, 0:2]).prod(1)
area_ratio = area2 / (area1 + 1e-16)
wh = bbox[:, 2:4] - bbox[:, 0:2]
ar_ratio = np.maximum(wh[:, 1] / (wh[:, 0] + 1e-16),
wh[:, 0] / (wh[:, 1] + 1e-16))
mask = (area_ratio > area_thr) & (
(wh > wh_thr).all(1)) & (ar_ratio < ar_thr)
return mask
def draw_umich_gaussian(heatmap, center, radius, k=1):
"""
draw_umich_gaussian, refer to https://github.com/xingyizhou/CenterNet/blob/master/src/lib/utils/image.py#L126
......
......@@ -48,7 +48,7 @@ from .op_helper import (satisfy_sample_constraint, filter_and_process,
generate_sample_bbox, clip_bbox, data_anchor_sampling,
satisfy_sample_constraint_coverage, crop_image_sampling,
generate_sample_bbox_square, bbox_area_sampling,
is_poly, transform_bbox, get_border)
is_poly, get_border)
from ppdet.utils.logger import setup_logger
from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
......@@ -2476,6 +2476,9 @@ class RandomSelect(BaseOperator):
"""
Randomly choose a transformation between transforms1 and transforms2,
and the probability of choosing transforms1 is p.
The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py
"""
def __init__(self, transforms1, transforms2, p=0.5):
......@@ -2833,6 +2836,10 @@ class WarpAffine(BaseOperator):
shift=0.1):
"""WarpAffine
Warp affine the image
The code is based on https://github.com/xingyizhou/CenterNet/blob/master/src/lib/datasets/sample/ctdet.py
"""
super(WarpAffine, self).__init__()
self.keep_res = keep_res
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
#include "rbox_iou_op.h"
#include "paddle/extension.h"
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
#include "rbox_iou_op.h"
#include "paddle/extension.h"
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/ops/box_iou_rotated
#pragma once
......
......@@ -11,6 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/models/anchor_heads_rotated/s2anet_head.py
import paddle
from paddle import ParamAttr
import paddle.nn as nn
......@@ -625,7 +628,8 @@ class S2ANetHead(nn.Layer):
fam_bbox_total = self.gwd_loss(fam_bbox_decode,
bbox_gt_bboxes_level)
fam_bbox_total = fam_bbox_total * feat_bbox_weights
fam_bbox_total = paddle.sum(fam_bbox_total) / num_total_samples
fam_bbox_total = paddle.sum(
fam_bbox_total) / num_total_samples
fam_bbox_losses.append(fam_bbox_total)
st_idx += feat_anchor_num
......@@ -739,7 +743,8 @@ class S2ANetHead(nn.Layer):
odm_bbox_total = self.gwd_loss(odm_bbox_decode,
bbox_gt_bboxes_level)
odm_bbox_total = odm_bbox_total * feat_bbox_weights
odm_bbox_total = paddle.sum(odm_bbox_total) / num_total_samples
odm_bbox_total = paddle.sum(
odm_bbox_total) / num_total_samples
odm_bbox_losses.append(odm_bbox_total)
st_idx += feat_anchor_num
......
......@@ -180,7 +180,7 @@ class CoordConv(nn.Layer):
name='',
data_format='NCHW'):
"""
CoordConv layer
CoordConv layer, see https://arxiv.org/abs/1807.03247
Args:
ch_in (int): input channel
......
......@@ -31,10 +31,8 @@ python tools/anchor_cluster.py -c ${config} -m ${method} -s ${size}
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2/v5的聚类算法 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
## 模型库
下表中展示了当前支持的网络结构。
......
......@@ -139,10 +139,8 @@ python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2/v5的聚类算法 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
## 4.修改参数配置
......
......@@ -126,8 +126,7 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
"""
YOLOv2 Anchor Cluster
Reference:
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
The code is based on https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
Args:
n (int): number of clusters
......@@ -196,103 +195,6 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
return centers
class YOLOv5AnchorCluster(BaseAnchorCluster):
def __init__(self,
n,
dataset,
size,
cache_path,
cache,
iters=300,
gen_iters=1000,
thresh=0.25,
verbose=True):
super(YOLOv5AnchorCluster, self).__init__(
n, cache_path, cache, verbose=verbose)
"""
YOLOv5 Anchor Cluster
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): iters of kmeans algorithm
gen_iters (int): iters of genetic algorithm
threshold (float): anchor scale threshold
verbose (bool): whether print results
"""
self.dataset = dataset
self.size = size
self.iters = iters
self.gen_iters = gen_iters
self.thresh = thresh
def print_result(self, centers):
whs = self.whs
centers = centers[np.argsort(centers.prod(1))]
x, best = self.metric(whs, centers)
bpr, aat = (
best > self.thresh).mean(), (x > self.thresh).mean() * self.n
logger.info(
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
(self.thresh, bpr, aat))
logger.info(
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
% (self.n, self.size, x.mean(), best.mean(),
x[x > self.thresh].mean()))
logger.info('%d anchor cluster result: [w, h]' % self.n)
for w, h in centers:
logger.info('[%d, %d]' % (round(w), round(h)))
def metric(self, whs, centers):
r = whs[:, None] / centers[None]
x = np.minimum(r, 1. / r).min(2)
return x, x.max(1)
def fitness(self, whs, centers):
_, best = self.metric(whs, centers)
return (best * (best > self.thresh)).mean()
def calc_anchors(self):
self.whs = self.whs * self.shapes / self.shapes.max(
1, keepdims=True) * np.array([self.size])
wh0 = self.whs
i = (wh0 < 3.0).any(1).sum()
if i:
logger.warning('Extremely small objects found. %d of %d'
'labels are < 3 pixels in width or height' %
(i, len(wh0)))
wh = wh0[(wh0 >= 2.0).any(1)]
logger.info('Running kmeans for %g anchors on %g points...' %
(self.n, len(wh)))
s = wh.std(0)
centers, dist = kmeans(wh / s, self.n, iter=self.iters)
centers *= s
f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
pbar = tqdm(
range(self.gen_iters),
desc='Evolving anchors with Genetic Algorithm')
for _ in pbar:
v = np.ones(sh)
while (v == 1).all():
v = ((np.random.random(sh) < mp) * np.random.random() *
np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
new_centers = (centers.copy() * v).clip(min=2.0)
new_f = self.fitness(wh, new_centers)
if new_f > f:
f, centers = new_f, new_centers.copy()
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
return centers
def main():
parser = ArgsParser()
parser.add_argument(
......@@ -303,18 +205,6 @@ def main():
default=1000,
type=int,
help='num of iterations for kmeans')
parser.add_argument(
'--gen_iters',
'-gi',
default=1000,
type=int,
help='num of iterations for genetic algorithm')
parser.add_argument(
'--thresh',
'-t',
default=0.25,
type=float,
help='anchor scale threshold')
parser.add_argument(
'--verbose', '-v', default=True, type=bool, help='whether print result')
parser.add_argument(
......@@ -328,7 +218,7 @@ def main():
'-m',
default='v2',
type=str,
help='cluster method, [v2, v5] are supported now')
help='cluster method, v2 is only supported now')
parser.add_argument(
'--cache_path', default='cache', type=str, help='cache path')
parser.add_argument(
......@@ -353,18 +243,14 @@ def main():
size = int(FLAGS.size)
size = [size, size]
elif 'image_shape' in cfg['TrainReader']['inputs_def']:
size = cfg['TrainReader']['inputs_def']['image_shape'][1:]
elif 'image_shape' in cfg['TestReader']['inputs_def']:
size = cfg['TestReader']['inputs_def']['image_shape'][1:]
else:
raise ValueError('size is not specified')
if FLAGS.method == 'v2':
cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
FLAGS.cache, FLAGS.iters, FLAGS.verbose)
elif FLAGS.method == 'v5':
cluster = YOLOv5AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
FLAGS.cache, FLAGS.iters, FLAGS.gen_iters,
FLAGS.thresh, FLAGS.verbose)
else:
raise ValueError('cluster method: %s is not supported' % FLAGS.method)
......
......@@ -111,8 +111,7 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
"""
YOLOv2 Anchor Cluster
Reference:
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
The code is based on https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
Args:
n (int): number of clusters
......@@ -182,103 +181,6 @@ class YOLOv2AnchorCluster(BaseAnchorCluster):
return centers
class YOLOv5AnchorCluster(BaseAnchorCluster):
def __init__(self,
n,
dataset,
size,
cache_path,
cache,
iters=300,
gen_iters=1000,
thresh=0.25,
verbose=True):
super(YOLOv5AnchorCluster, self).__init__(
n, cache_path, cache, verbose=verbose)
"""
YOLOv5 Anchor Cluster
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): iters of kmeans algorithm
gen_iters (int): iters of genetic algorithm
threshold (float): anchor scale threshold
verbose (bool): whether print results
"""
self.dataset = dataset
self.size = size
self.iters = iters
self.gen_iters = gen_iters
self.thresh = thresh
def print_result(self, centers):
whs = self.whs
centers = centers[np.argsort(centers.prod(1))]
x, best = self.metric(whs, centers)
bpr, aat = (
best > self.thresh).mean(), (x > self.thresh).mean() * self.n
logger.info(
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
(self.thresh, bpr, aat))
logger.info(
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
% (self.n, self.size, x.mean(), best.mean(),
x[x > self.thresh].mean()))
logger.info('%d anchor cluster result: [w, h]' % self.n)
for w, h in centers:
logger.info('[%d, %d]' % (round(w), round(h)))
def metric(self, whs, centers):
r = whs[:, None] / centers[None]
x = np.minimum(r, 1. / r).min(2)
return x, x.max(1)
def fitness(self, whs, centers):
_, best = self.metric(whs, centers)
return (best * (best > self.thresh)).mean()
def calc_anchors(self):
self.whs = self.whs * self.shapes / self.shapes.max(
1, keepdims=True) * np.array([self.size])
wh0 = self.whs
i = (wh0 < 3.0).any(1).sum()
if i:
logger.warning('Extremely small objects found. %d of %d'
'labels are < 3 pixels in width or height' %
(i, len(wh0)))
wh = wh0[(wh0 >= 2.0).any(1)]
logger.info('Running kmeans for %g anchors on %g points...' %
(self.n, len(wh)))
s = wh.std(0)
centers, dist = kmeans(wh / s, self.n, iter=self.iters)
centers *= s
f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
pbar = tqdm(
range(self.gen_iters),
desc='Evolving anchors with Genetic Algorithm')
for _ in pbar:
v = np.ones(sh)
while (v == 1).all():
v = ((np.random.random(sh) < mp) * np.random.random() *
np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
new_centers = (centers.copy() * v).clip(min=2.0)
new_f = self.fitness(wh, new_centers)
if new_f > f:
f, centers = new_f, new_centers.copy()
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
return centers
def main():
parser = ArgsParser()
parser.add_argument(
......@@ -289,18 +191,6 @@ def main():
default=1000,
type=int,
help='num of iterations for kmeans')
parser.add_argument(
'--gen_iters',
'-gi',
default=1000,
type=int,
help='num of iterations for genetic algorithm')
parser.add_argument(
'--thresh',
'-t',
default=0.25,
type=float,
help='anchor scale threshold')
parser.add_argument(
'--verbose', '-v', default=True, type=bool, help='whether print result')
parser.add_argument(
......@@ -314,7 +204,7 @@ def main():
'-m',
default='v2',
type=str,
help='cluster method, [v2, v5] are supported now')
help='cluster method, v2 is only supported now')
parser.add_argument(
'--cache_path', default='cache', type=str, help='cache path')
parser.add_argument(
......@@ -338,19 +228,15 @@ def main():
else:
size = int(FLAGS.size)
size = [size, size]
elif 'inputs_def' in cfg['TrainReader'] and 'image_shape' in cfg[
'TrainReader']['inputs_def']:
size = cfg['TrainReader']['inputs_def']['image_shape'][1:]
elif 'inputs_def' in cfg['TestReader'] and 'image_shape' in cfg[
'TestReader']['inputs_def']:
size = cfg['TestReader']['inputs_def']['image_shape'][1:]
else:
raise ValueError('size is not specified')
if FLAGS.method == 'v2':
cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
FLAGS.cache, FLAGS.iters, FLAGS.verbose)
elif FLAGS.method == 'v5':
cluster = YOLOv5AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path,
FLAGS.cache, FLAGS.iters, FLAGS.gen_iters,
FLAGS.thresh, FLAGS.verbose)
else:
raise ValueError('cluster method: %s is not supported' % FLAGS.method)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册