Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
ca8c77d9
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca8c77d9
编写于
12月 28, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
selecte execution according to strategy test=develop
上级
4743c9cd
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
86 addition
and
101 deletion
+86
-101
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+3
-4
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+8
-3
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+6
-6
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+51
-26
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+3
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+0
-8
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+0
-2
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+1
-7
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+9
-30
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
...fluid/tests/unittests/test_parallel_executor_seresnext.py
+3
-12
python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py
...uid/tests/unittests/test_parallel_executor_transformer.py
+0
-2
未找到文件。
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
ca8c77d9
...
...
@@ -134,7 +134,7 @@ std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
std
::
unique_ptr
<
ir
::
Graph
>
BuildStrategy
::
Apply
(
const
ProgramDesc
&
main_program
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
size_t
&
n
um_parallel_device
s
,
const
size_t
&
n
rank
s
,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const
bool
use_cuda
,
platform
::
NCCLContextMap
*
nccl_ctxs
)
const
{
#else
...
...
@@ -153,9 +153,8 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
Erase
(
"local_scopes"
);
pass
->
SetNotOwned
<
const
std
::
vector
<
Scope
*>>
(
"local_scopes"
,
&
local_scopes
);
pass
->
Erase
(
"num_parallel_devices"
);
pass
->
Set
<
size_t
>
(
"num_parallel_devices"
,
new
size_t
(
num_parallel_devices
));
pass
->
Erase
(
"nranks"
);
pass
->
Set
<
size_t
>
(
"nranks"
,
new
size_t
(
nranks
));
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform
::
NCCLContextMap
*
nctx
=
use_cuda
?
nccl_ctxs
:
nullptr
;
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
ca8c77d9
...
...
@@ -84,8 +84,6 @@ struct BuildStrategy {
bool
fuse_broadcast_op_
{
false
};
bool
enable_parallel_graph_
{
false
};
int
num_trainers_
{
1
};
int
trainer_id_
{
0
};
std
::
vector
<
std
::
string
>
trainers_endpoints_
;
...
...
@@ -112,7 +110,7 @@ struct BuildStrategy {
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
size_t
&
n
um_parallel_devices_
,
const
size_t
&
n
ranks
,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const
bool
use_cuda
,
platform
::
NCCLContextMap
*
nccl_ctxs
)
const
;
...
...
@@ -120,6 +118,13 @@ struct BuildStrategy {
const
bool
use_cuda
)
const
;
#endif
// If set true, ParallelExecutor would build the main_program into multiple
// graphs,
// each of the graphs would run with one device. This approach can achieve
// better performance
// on some scenarios.
mutable
bool
enable_parallel_graph_
=
false
;
private:
mutable
bool
is_finalized_
=
false
;
mutable
std
::
shared_ptr
<
ir
::
PassBuilder
>
pass_builder_
;
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
ca8c77d9
...
...
@@ -138,7 +138,7 @@ static const char kLossVarName[] = "loss_var_name";
static
const
char
kPlaces
[]
=
"places"
;
static
const
char
kLocalScopes
[]
=
"local_scopes"
;
static
const
char
kStrategy
[]
=
"strategy"
;
static
const
char
kN
umParallelDevices
[]
=
"num_parallel_device
s"
;
static
const
char
kN
Ranks
[]
=
"nrank
s"
;
void
MultiDevSSAGraphBuilder
::
Init
()
const
{
all_vars_
.
clear
();
...
...
@@ -174,7 +174,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
auto
nodes
=
graph
->
ReleaseNodes
();
ir
::
Graph
&
result
=
*
graph
;
size_t
n
um_parallel_devices
=
Get
<
size_t
>
(
kNumParallelDevice
s
);
size_t
n
ranks
=
Get
<
size_t
>
(
kNRank
s
);
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
IsVar
()
&&
node
->
Var
())
{
...
...
@@ -251,7 +251,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
}
if
(
!
is_forwarding
&&
n
um_parallel_device
s
>
1UL
)
{
if
(
!
is_forwarding
&&
n
rank
s
>
1UL
)
{
bool
is_bk_op
=
static_cast
<
bool
>
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
&
...
...
@@ -649,13 +649,13 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
loss_grad_name
,
ir
::
Node
*
out_var_node
,
proto
::
VarType
::
Type
dtype
)
const
{
size_t
n
um_parallel_devices
=
Get
<
size_t
>
(
"num_parallel_device
s"
);
size_t
n
ranks
=
Get
<
size_t
>
(
"nrank
s"
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
places_
[
i
]);
auto
*
op_handle
=
new
ScaleLossGradOpHandle
(
result
->
CreateEmptyNode
(
"scale_loss_grad"
,
ir
::
Node
::
Type
::
kOperation
),
n
um_parallel_device
s
,
local_scopes_
[
i
],
places_
[
i
],
dev_ctx
,
dtype
);
n
rank
s
,
local_scopes_
[
i
],
places_
[
i
],
dev_ctx
,
dtype
);
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
op_handle
);
// FIXME: Currently ScaleLossGradOp only use device_count as scale
...
...
@@ -888,4 +888,4 @@ REGISTER_PASS(multi_devices_pass,
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kPlaces
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLocalScopes
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kStrategy
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kN
umParallelDevice
s
);
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kN
Rank
s
);
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
ca8c77d9
...
...
@@ -107,7 +107,7 @@ class ParallelExecutorPrivate {
bool
own_local_scope_
;
bool
use_cuda_
;
bool
use_all_reduce_
;
size_t
n
um_parallel_device
s_
;
size_t
n
rank
s_
;
// global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
// then keeps unchanged
...
...
@@ -203,7 +203,7 @@ ParallelExecutor::ParallelExecutor(
member_
->
build_strategy_
=
build_strategy
;
member_
->
use_all_reduce_
=
build_strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
;
member_
->
n
um_parallel_device
s_
=
num_trainers
*
places
.
size
();
member_
->
n
rank
s_
=
num_trainers
*
places
.
size
();
if
(
!
member_
->
use_all_reduce_
)
{
PADDLE_ENFORCE
(
places
.
size
()
>
1
,
...
...
@@ -211,16 +211,14 @@ ParallelExecutor::ParallelExecutor(
"the number of places must be greater than 1."
);
}
if
(
build_strategy
.
enable_parallel_graph_
)
{
PADDLE_ENFORCE
(
member_
->
use_all_reduce_
,
"build_strategy.reduce should be `AllReduce` if you want to enable"
"ParallelGraph."
);
PADDLE_ENFORCE
(
member_
->
use_cuda_
,
"execution_strategy.use_cuda should be True if you want to enable "
"ParallelGraph."
);
}
// FIXME(Yancey1989): parallel graph mode get better performance
// in GPU allreduce distributed training. Need an elegant way to
// choice the execution strategy.
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
main_program
,
exec_strategy
,
build_strategy
);
VLOG
(
1
)
<<
"Enable ParallelGraph Execution: "
<<
build_strategy
.
enable_parallel_graph_
;
// Step 1. Bcast the bcast_vars to devs.
// Create local scopes
...
...
@@ -242,20 +240,20 @@ ParallelExecutor::ParallelExecutor(
// Bcast Parameters to all GPUs
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
// nccl collective would broadcast nccl
i
d by gen_nccl_id operator.
std
::
unique_ptr
<
ncclUniqueId
>
nccl_id
;
// nccl collective would broadcast nccl
UniqueI
d by gen_nccl_id operator.
if
(
nccl_id_var
!=
nullptr
)
{
nccl_id
=
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
(
);
nccl_id
.
reset
(
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
()
);
}
if
(
build_strategy
.
enable_parallel_graph_
&&
places
.
size
()
>
1
)
{
if
(
nccl_id
==
nullptr
)
{
nccl_id
=
new
ncclUniqueId
(
);
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclGetUniqueId
(
nccl_id
));
if
(
build_strategy
.
enable_parallel_graph_
&&
member_
->
nranks_
>
1UL
)
{
if
(
nccl_id
.
get
()
==
nullptr
)
{
nccl_id
.
reset
(
new
ncclUniqueId
()
);
platform
::
dynload
::
ncclGetUniqueId
(
nccl_id
.
get
(
));
}
}
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
num_trainers
,
trainer_id
));
member_
->
places_
,
nccl_id
.
get
()
,
num_trainers
,
trainer_id
));
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
...
...
@@ -268,27 +266,25 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
member_
->
num_parallel_devices_
=
member_
->
places_
.
size
()
*
num_trainers
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if
(
build_strategy
.
enable_parallel_graph_
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
{
member_
->
places_
[
i
]},
loss_var_name
,
{
member_
->
local_scopes_
[
i
]},
member_
->
n
um_parallel_devices
_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
{
member_
->
local_scopes_
[
i
]},
member_
->
n
ranks_
,
member_
->
use_cuda
_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
}
else
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
num_parallel_devices_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
graphs
.
push_back
(
std
::
move
(
graph
));
}
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
n
um_parallel_device
s_
,
member_
->
use_cuda_
);
member_
->
n
rank
s_
,
member_
->
use_cuda_
);
graphs
.
push_back
(
std
::
move
(
graph
));
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
...
...
@@ -470,6 +466,35 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
}
}
bool
ParallelExecutor
::
EnableParallelGraphExecution
(
const
ProgramDesc
&
main_program
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
{
bool
enable_parallel_graph
=
true
;
// TODO(Yancey1989): support sparse update in ParallelGraph mode.
for
(
auto
&
var_desc
:
main_program
.
Block
(
0
).
AllVars
())
{
if
(
var_desc
->
GetType
()
==
proto
::
VarType
::
SELECTED_ROWS
)
{
enable_parallel_graph
=
false
;
}
}
// TODO(Yancey1989): support pserver mode
for
(
auto
&
op_desc
:
main_program
.
Block
(
0
).
AllOps
())
{
if
(
op_desc
->
Type
()
==
"send"
||
op_desc
->
Type
()
==
"recv"
)
{
enable_parallel_graph
=
false
;
break
;
}
}
if
(
!
member_
->
use_all_reduce_
||
!
member_
->
use_cuda_
)
enable_parallel_graph
=
false
;
if
(
build_strategy
.
enable_sequential_execution_
||
exec_strategy
.
type_
==
ExecutionStrategy
::
ExecutorType
::
kExperimental
)
enable_parallel_graph
=
false
;
return
enable_parallel_graph
;
}
ParallelExecutor
::~
ParallelExecutor
()
{
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
ca8c77d9
...
...
@@ -68,6 +68,9 @@ class ParallelExecutor {
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
bool
EnableParallelGraphExecution
(
const
ProgramDesc
&
main_program
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
;
ParallelExecutorPrivate
*
member_
;
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
ca8c77d9
...
...
@@ -980,14 +980,6 @@ All parameter, weight, gradient are variables in Paddle.
R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
to fuse elementwise_add_op and activation_op,
it may make the execution faster. Default False)DOC"
)
.
def_property
(
"enable_parallel_graph"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
enable_parallel_graph_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_parallel_graph_
=
b
;
},
R"DOC(The type is BOOL, if set True, ParallelExecutor would build the main_program into multiple graphs,
each of the graphs would run with one device. This approach can achieve better performance in
some scenarios. Please note, this approach only supports all-reduce mode
on GPU device)DOC"
)
.
def_property
(
"memory_optimize"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
memory_optimize_
;
},
...
...
python/paddle/fluid/__init__.py
浏览文件 @
ca8c77d9
...
...
@@ -156,7 +156,8 @@ def __bootstrap__():
read_env_flags
+=
[
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
,
'enable_cublas_tensor_op_math'
,
'conv_workspace_size_limit'
,
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
,
'sync_nccl_allreduce'
]
core
.
init_gflags
([
sys
.
argv
[
0
]]
+
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
ca8c77d9
...
...
@@ -39,7 +39,6 @@ class TestParallelExecutorBase(unittest.TestCase):
seed
=
None
,
use_parallel_executor
=
True
,
use_reduce
=
False
,
use_parallel_graph
=
False
,
use_ir_memory_optimize
=
False
,
fuse_elewise_add_act_ops
=
False
,
optimizer
=
fluid
.
optimizer
.
Adam
,
...
...
@@ -80,7 +79,6 @@ class TestParallelExecutorBase(unittest.TestCase):
if
use_fast_executor
:
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_parallel_graph
=
use_parallel_graph
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
\
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
fuse_elewise_add_act_ops
=
fuse_elewise_add_act_ops
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
ca8c77d9
...
...
@@ -175,14 +175,13 @@ class TestCRFModel(unittest.TestCase):
print
(
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
])[
0
])
def
_new_build_strategy
(
self
,
use_reduce
=
False
,
use_parallel_graph
=
False
):
def
_new_build_strategy
(
self
,
use_reduce
=
False
):
build_strategy
=
fluid
.
BuildStrategy
()
if
use_reduce
:
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
else
:
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
enable_parallel_graph
=
use_parallel_graph
return
build_strategy
...
...
@@ -204,11 +203,6 @@ class TestCRFModel(unittest.TestCase):
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(
use_parallel_graph
=
True
),
use_cuda
=
True
)
self
.
check_network_convergence
(
is_sparse
=
False
,
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
ca8c77d9
...
...
@@ -100,10 +100,7 @@ class TestMNIST(TestParallelExecutorBase):
self
.
assertAlmostEqual
(
loss
[
0
],
loss
[
1
],
delta
=
1e-4
)
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
,
use_parallel_graph
=
False
):
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -114,15 +111,13 @@ class TestMNIST(TestParallelExecutorBase):
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
,
use_parallel_graph
=
use_parallel_graph
)
use_reduce
=
use_reduce
)
def
test_simple_fc
(
self
):
# use_cuda
if
core
.
is_compiled_with_cuda
():
self
.
check_simple_fc_convergence
(
True
)
self
.
check_simple_fc_convergence
(
True
,
use_reduce
=
False
,
use_parallel_graph
=
True
)
self
.
check_simple_fc_convergence
(
True
,
use_reduce
=
False
)
self
.
check_simple_fc_convergence
(
False
)
def
test_simple_fc_with_new_strategy
(
self
):
...
...
@@ -130,9 +125,7 @@ class TestMNIST(TestParallelExecutorBase):
self
.
_compare_reduce_and_allreduce
(
simple_fc_net
,
True
)
self
.
_compare_reduce_and_allreduce
(
simple_fc_net
,
False
)
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
,
use_parallel_graph
=
False
):
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -144,16 +137,7 @@ class TestMNIST(TestParallelExecutorBase):
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
False
,
use_parallel_graph
=
use_parallel_graph
)
parallel_first_loss
,
parallel_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
True
,
use_parallel_graph
=
use_parallel_graph
)
use_parallel_executor
=
False
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_first_loss
),
...
...
@@ -165,15 +149,11 @@ class TestMNIST(TestParallelExecutorBase):
def
test_simple_fc_parallel_accuracy
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_simple_fc_parallel_accuracy
(
True
)
self
.
check_simple_fc_parallel_accuracy
(
True
,
use_parallel_graph
=
True
)
self
.
check_simple_fc_parallel_accuracy
(
True
)
# FIXME(Yancey1989): ParallelGraph executor type support CPU mode
self
.
check_simple_fc_parallel_accuracy
(
False
)
def
check_batchnorm_fc_convergence
(
self
,
use_cuda
,
use_fast_executor
,
use_parallel_graph
=
False
):
def
check_batchnorm_fc_convergence
(
self
,
use_cuda
,
use_fast_executor
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -184,8 +164,7 @@ class TestMNIST(TestParallelExecutorBase):
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_fast_executor
=
use_fast_executor
,
use_parallel_graph
=
use_parallel_graph
)
use_fast_executor
=
use_fast_executor
)
def
test_batchnorm_fc
(
self
):
for
use_cuda
in
(
False
,
True
):
...
...
@@ -193,7 +172,7 @@ class TestMNIST(TestParallelExecutorBase):
self
.
check_batchnorm_fc_convergence
(
use_cuda
,
use_fast_executor
)
self
.
check_batchnorm_fc_convergence
(
use_cuda
=
True
,
use_fast_executor
=
False
,
use_parallel_graph
=
True
)
use_cuda
=
True
,
use_fast_executor
=
False
)
def
test_batchnorm_fc_with_new_strategy
(
self
):
# FIXME(zcd): close this test temporally.
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
浏览文件 @
ca8c77d9
...
...
@@ -277,9 +277,7 @@ class TestResnet(TestParallelExecutorBase):
use_cuda
=
True
,
use_reduce
=
False
,
iter
=
20
,
delta2
=
1e-6
,
use_parallel_graph
=
False
,
lr_scale
=
1.0
):
delta2
=
1e-6
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -298,8 +296,7 @@ class TestResnet(TestParallelExecutorBase):
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
,
optimizer
=
optimizer
,
use_parallel_executor
=
False
,
use_parallel_graph
=
use_parallel_graph
)
use_parallel_executor
=
False
)
parallel_first_loss
,
parallel_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
...
...
@@ -308,8 +305,7 @@ class TestResnet(TestParallelExecutorBase):
batch_size
=
batch_size
,
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
,
optimizer
=
optimizer
,
use_parallel_graph
=
use_parallel_graph
)
optimizer
=
optimizer
)
self
.
assertAlmostEquals
(
np
.
mean
(
parallel_first_loss
),
single_first_loss
[
0
],
delta
=
1e-6
)
...
...
@@ -320,11 +316,6 @@ class TestResnet(TestParallelExecutorBase):
if
core
.
is_compiled_with_cuda
():
self
.
_check_resnet_convergence
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
)
self
.
_check_resnet_convergence
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
,
use_parallel_graph
=
True
,
lr_scale
=
core
.
get_cuda_device_count
())
self
.
_check_resnet_convergence
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
2
,
delta2
=
1e-3
)
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py
浏览文件 @
ca8c77d9
...
...
@@ -175,8 +175,6 @@ class TestTransformer(TestParallelExecutorBase):
self
.
check_network_convergence
(
transformer
,
use_cuda
=
True
)
self
.
check_network_convergence
(
transformer
,
use_cuda
=
True
,
enable_sequential_execution
=
True
)
self
.
check_network_convergence
(
transformer
,
use_cuda
=
True
,
use_parallel_graph
=
True
)
self
.
check_network_convergence
(
transformer
,
use_cuda
=
False
,
iter
=
5
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录