Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
ca535d18
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca535d18
编写于
12月 08, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add detection_output code only
上级
6665c492
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
518 addition
and
0 deletion
+518
-0
paddle/operators/detection_output_op.cc
paddle/operators/detection_output_op.cc
+91
-0
paddle/operators/detection_output_op.cu.cc
paddle/operators/detection_output_op.cu.cc
+21
-0
paddle/operators/detection_output_op.h
paddle/operators/detection_output_op.h
+114
-0
paddle/operators/math/detection_util.h
paddle/operators/math/detection_util.h
+292
-0
未找到文件。
paddle/operators/detection_output_op.cc
0 → 100644
浏览文件 @
ca535d18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detection_output_op.h"
namespace
paddle
{
namespace
operators
{
class
Detection_output_OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Detection_output_OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Loc"
,
"(Tensor) The input tensor of detection_output operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
AddInput
(
"Conf"
,
"(Tensor) The input tensor of detection_output operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
AddInput
(
"PriorBox"
,
"(Tensor) The input tensor of detection_output operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of detection_output operator."
"N * M."
"M = C * H * W"
);
AddAttr
<
int
>
(
"background_label_id"
,
"(int), multi level pooling"
);
AddAttr
<
int
>
(
"num_classes"
,
"(int), multi level pooling"
);
AddAttr
<
float
>
(
"nms_threshold"
,
"(int), multi level pooling"
);
AddAttr
<
float
>
(
"confidence_threshold"
,
"(int), multi level pooling"
);
AddAttr
<
int
>
(
"top_k"
,
"(int), multi level pooling"
);
AddAttr
<
int
>
(
"nms_top_k"
,
"(int), multi level pooling"
);
AddComment
(
R"DOC(
"Does spatial pyramid pooling on the input image by taking the max,
etc. within regions so that the result vector of different sized
images are of the same size
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Output shape: $(H_{out}, W_{out})$
Where
$$
H_{out} = N \\
W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in}
$$
)DOC"
);
}
};
class
Detection_output_Op
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Detection_output_Op"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Detection_output_Op should not be null."
);
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
int
pyramid_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pyramid_height"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
"Detection_output_ing intput must be of 4-dimensional."
);
int
outlen
=
((
std
::
pow
(
4
,
pyramid_height
)
-
1
)
/
(
4
-
1
))
*
in_x_dims
[
1
];
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
outlen
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
detection_output
,
ops
::
Detection_output_Op
,
ops
::
Detection_output_OpMaker
);
REGISTER_OP_CPU_KERNEL
(
detection_output
,
ops
::
Detection_output_Kernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
Detection_output_Kernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/detection_output_op.cu.cc
0 → 100644
浏览文件 @
ca535d18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detection_output_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
detection_output
,
ops
::
Detection_output_Kernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
Detection_output_Kernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/detection_output_op.h
0 → 100644
浏览文件 @
ca535d18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/softmax.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
>
class
Detection_output_Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
framework
::
Tensor
*
in_loc
=
context
.
Input
<
framework
::
Tensor
>
(
"Loc"
);
const
framework
::
Tensor
*
in_conf
=
context
.
Input
<
framework
::
Tensor
>
(
"Conf"
);
const
framework
::
Tensor
*
in_priorbox
=
context
.
Input
<
framework
::
Tensor
>
(
"PriorBox"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
num_classes
=
context
.
template
Attr
<
int
>(
"num_classes"
);
int
top_k
=
context
.
template
Attr
<
int
>(
"top_k"
);
int
nms_top_k
=
context
.
template
Attr
<
int
>(
"nms_top_k"
);
int
background_label_id
=
context
.
template
Attr
<
int
>(
"background_label_id"
);
float
nms_threshold
=
context
.
template
Attr
<
float
>(
"nms_threshold"
);
float
confidence_threshold
=
context
.
template
Attr
<
float
>(
"confidence_threshold"
);
int
input_num
=
in_loc
->
dims
()[
0
];
int
batch_size
=
in_loc
->
dims
()[
1
];
int
loc_sum_size
=
in_loc
->
numel
();
int
conf_sum_size
=
in_conf
->
numel
();
std
::
vector
<
int64_t
>
loc_shape_vec
({
1
,
loc_sum_size
});
std
::
vector
<
int64_t
>
conf_shape_vec
(
{
conf_sum_size
/
num_classes
,
num_classes
});
framework
::
DDim
loc_shape
(
framework
::
make_ddim
(
loc_shape_vec
));
framework
::
DDim
conf_shape
(
framework
::
make_ddim
(
conf_shape_vec
));
framework
::
Tensor
loc_tensor
;
framework
::
Tensor
conf_tensor
;
loc_tensor
.
mutable_data
<
T
>
(
loc_shape
,
context
.
GetPlace
());
conf_tensor
.
mutable_data
<
T
>
(
conf_shape
,
context
.
GetPlace
());
// KNCHW ==> NHWC
for
(
int
i
=
0
;
i
<
input_num
;
++
i
)
{
math
::
appendWithPermute
<
T
>
(
*
in_loc
,
&
loc_tensor
);
math
::
appendWithPermute
<
T
>
(
*
in_conf
,
&
conf_tensor
);
}
// softmax
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_tensor
,
&
conf_tensor
);
// get decode bboxes
size_t
num_priors
=
in_priorbox
->
numel
()
/
8
;
std
::
vector
<
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>
all_decoded_bboxes
;
for
(
size_t
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
vector
<
operators
::
math
::
BBox
<
T
>>
decoded_bboxes
;
for
(
size_t
i
=
0
;
i
<
num_priors
;
++
i
)
{
size_t
prior_offset
=
i
*
8
;
size_t
loc_pred_offset
=
n
*
num_priors
*
4
+
i
*
4
;
std
::
vector
<
math
::
BBox
<
T
>>
prior_bbox_vec
;
math
::
getBBoxFromPriorData
<
T
>
(
in_priorbox
->
data
<
T
>
()
+
prior_offset
,
1
,
prior_bbox_vec
);
std
::
vector
<
std
::
vector
<
T
>>
prior_bbox_var
;
math
::
getBBoxVarFromPriorData
<
T
>
(
in_priorbox
->
data
<
T
>
()
+
prior_offset
,
1
,
prior_bbox_var
);
std
::
vector
<
T
>
loc_pred_data
;
for
(
size_t
j
=
0
;
j
<
4
;
++
j
)
loc_pred_data
.
push_back
(
*
(
loc_tensor
.
data
<
T
>
()
+
loc_pred_offset
+
j
));
math
::
BBox
<
T
>
bbox
=
math
::
decodeBBoxWithVar
<
T
>
(
prior_bbox_vec
[
0
],
prior_bbox_var
[
0
],
loc_pred_data
);
decoded_bboxes
.
push_back
(
bbox
);
}
all_decoded_bboxes
.
push_back
(
decoded_bboxes
);
}
std
::
vector
<
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>>
all_indices
;
int
num_kept
=
math
::
getDetectionIndices
<
T
>
(
conf_tensor
.
data
<
T
>
(),
num_priors
,
num_classes
,
background_label_id
,
batch_size
,
confidence_threshold
,
nms_top_k
,
nms_threshold
,
top_k
,
all_decoded_bboxes
,
&
all_indices
);
framework
::
Tensor
out_tmp
;
if
(
num_kept
<=
0
)
{
std
::
vector
<
int64_t
>
out_shape_vec
({
0
,
0
});
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
out
->
Resize
(
out_shape
);
return
;
}
std
::
vector
<
int64_t
>
out_shape_vec
({
num_kept
,
7
});
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
out_tmp
.
mutable_data
<
T
>
(
out_shape
,
context
.
GetPlace
());
T
*
out_data
=
out_tmp
.
data
<
T
>
();
math
::
getDetectionOutput
<
T
>
(
conf_tensor
.
data
<
T
>
(),
num_kept
,
num_priors
,
num_classes
,
batch_size
,
all_indices
,
all_decoded_bboxes
,
out_data
);
out
->
mutable_data
<
T
>
(
out_shape
,
context
.
GetPlace
());
out
->
ShareDataWith
(
out_tmp
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/math/detection_util.h
0 → 100644
浏览文件 @
ca535d18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
>
struct
BBox
{
BBox
(
T
x_min
,
T
y_min
,
T
x_max
,
T
y_max
)
:
x_min
(
x_min
),
y_min
(
y_min
),
x_max
(
x_max
),
y_max
(
y_max
),
is_difficult
(
false
)
{}
BBox
()
{}
T
get_width
()
const
{
return
x_max
-
x_min
;
}
T
get_height
()
const
{
return
y_max
-
y_min
;
}
T
get_center_x
()
const
{
return
(
x_min
+
x_max
)
/
2
;
}
T
get_center_y
()
const
{
return
(
y_min
+
y_max
)
/
2
;
}
T
get_area
()
const
{
return
get_width
()
*
get_height
();
}
// coordinate of bounding box
T
x_min
;
T
y_min
;
T
x_max
;
T
y_max
;
// whether difficult object (e.g. object with heavy occlusion is difficult)
bool
is_difficult
;
};
// KNCHW ==> NHWC
template
<
typename
T
>
int
appendWithPermute
(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
)
{
const
int
input_nums
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
1
];
const
int
channels
=
input
.
dims
()[
2
];
const
int
height
=
input
.
dims
()[
3
];
const
int
weight
=
input
.
dims
()[
4
];
int
image_size
=
height
*
weight
;
int
offset
=
0
;
for
(
int
p
=
0
;
p
<
input_nums
;
++
p
)
{
int
in_p_offset
=
p
*
batch_size
*
channels
*
image_size
;
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
int
in_n_offset
=
n
*
channels
*
image_size
;
int
out_n_offset
=
n
*
input
.
numel
()
/
batch_size
+
offset
;
int
in_stride
=
image_size
;
int
out_stride
=
channels
;
const
T
*
in_data
=
input
.
data
<
T
>
()
+
in_p_offset
+
in_n_offset
;
T
*
out_data
=
output
->
data
<
T
>
()
+
out_n_offset
;
for
(
int
i
=
0
;
i
<
channels
;
++
i
)
{
for
(
int
c
=
0
;
c
<
image_size
;
++
c
)
{
out_data
[
out_stride
*
c
+
i
]
=
in_data
[
i
*
in_stride
+
c
];
}
}
}
offset
+=
image_size
*
channels
;
}
return
0
;
}
template
<
typename
T
>
void
getBBoxFromPriorData
(
const
T
*
prior_data
,
const
size_t
num_bboxes
,
std
::
vector
<
BBox
<
T
>>&
bbox_vec
)
{
size_t
out_offset
=
bbox_vec
.
size
();
bbox_vec
.
resize
(
bbox_vec
.
size
()
+
num_bboxes
);
for
(
size_t
i
=
0
;
i
<
num_bboxes
;
++
i
)
{
BBox
<
T
>
bbox
;
bbox
.
x_min
=
*
(
prior_data
+
i
*
8
);
bbox
.
y_min
=
*
(
prior_data
+
i
*
8
+
1
);
bbox
.
x_max
=
*
(
prior_data
+
i
*
8
+
2
);
bbox
.
y_max
=
*
(
prior_data
+
i
*
8
+
3
);
bbox_vec
[
out_offset
+
i
]
=
bbox
;
}
}
template
<
typename
T
>
void
getBBoxVarFromPriorData
(
const
T
*
prior_data
,
const
size_t
num
,
std
::
vector
<
std
::
vector
<
T
>>&
var_vec
)
{
size_t
out_offset
=
var_vec
.
size
();
var_vec
.
resize
(
var_vec
.
size
()
+
num
);
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
std
::
vector
<
T
>
var
;
var
.
push_back
(
*
(
prior_data
+
i
*
8
+
4
));
var
.
push_back
(
*
(
prior_data
+
i
*
8
+
5
));
var
.
push_back
(
*
(
prior_data
+
i
*
8
+
6
));
var
.
push_back
(
*
(
prior_data
+
i
*
8
+
7
));
var_vec
[
out_offset
+
i
]
=
var
;
}
}
template
<
typename
T
>
BBox
<
T
>
decodeBBoxWithVar
(
BBox
<
T
>&
prior_bbox
,
const
std
::
vector
<
T
>&
prior_bbox_var
,
const
std
::
vector
<
T
>&
loc_pred_data
)
{
T
prior_bbox_width
=
prior_bbox
.
get_width
();
T
prior_bbox_height
=
prior_bbox
.
get_height
();
T
prior_bbox_center_x
=
prior_bbox
.
get_center_x
();
T
prior_bbox_center_y
=
prior_bbox
.
get_center_y
();
T
decoded_bbox_center_x
=
prior_bbox_var
[
0
]
*
loc_pred_data
[
0
]
*
prior_bbox_width
+
prior_bbox_center_x
;
T
decoded_bbox_center_y
=
prior_bbox_var
[
1
]
*
loc_pred_data
[
1
]
*
prior_bbox_height
+
prior_bbox_center_y
;
T
decoded_bbox_width
=
std
::
exp
(
prior_bbox_var
[
2
]
*
loc_pred_data
[
2
])
*
prior_bbox_width
;
T
decoded_bbox_height
=
std
::
exp
(
prior_bbox_var
[
3
]
*
loc_pred_data
[
3
])
*
prior_bbox_height
;
BBox
<
T
>
decoded_bbox
;
decoded_bbox
.
x_min
=
decoded_bbox_center_x
-
decoded_bbox_width
/
2
;
decoded_bbox
.
y_min
=
decoded_bbox_center_y
-
decoded_bbox_height
/
2
;
decoded_bbox
.
x_max
=
decoded_bbox_center_x
+
decoded_bbox_width
/
2
;
decoded_bbox
.
y_max
=
decoded_bbox_center_y
+
decoded_bbox_height
/
2
;
return
decoded_bbox
;
}
template
<
typename
T1
,
typename
T2
>
bool
sortScorePairDescend
(
const
std
::
pair
<
T1
,
T2
>&
pair1
,
const
std
::
pair
<
T1
,
T2
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
typename
T
>
bool
sortScorePairDescend
(
const
std
::
pair
<
T
,
BBox
<
T
>>&
pair1
,
const
std
::
pair
<
T
,
BBox
<
T
>>&
pair2
);
template
<
typename
T
>
T
jaccardOverlap
(
const
BBox
<
T
>&
bbox1
,
const
BBox
<
T
>&
bbox2
)
{
if
(
bbox2
.
x_min
>
bbox1
.
x_max
||
bbox2
.
x_max
<
bbox1
.
x_min
||
bbox2
.
y_min
>
bbox1
.
y_max
||
bbox2
.
y_max
<
bbox1
.
y_min
)
{
return
0.0
;
}
else
{
T
inter_x_min
=
std
::
max
(
bbox1
.
x_min
,
bbox2
.
x_min
);
T
inter_y_min
=
std
::
max
(
bbox1
.
y_min
,
bbox2
.
y_min
);
T
interX_max
=
std
::
min
(
bbox1
.
x_max
,
bbox2
.
x_max
);
T
interY_max
=
std
::
min
(
bbox1
.
y_max
,
bbox2
.
y_max
);
T
inter_width
=
interX_max
-
inter_x_min
;
T
inter_height
=
interY_max
-
inter_y_min
;
T
inter_area
=
inter_width
*
inter_height
;
T
bbox_area1
=
bbox1
.
get_area
();
T
bbox_area2
=
bbox2
.
get_area
();
return
inter_area
/
(
bbox_area1
+
bbox_area2
-
inter_area
);
}
}
template
<
typename
T
>
void
applyNMSFast
(
const
std
::
vector
<
BBox
<
T
>>&
bboxes
,
const
T
*
conf_score_data
,
size_t
class_idx
,
size_t
top_k
,
T
conf_threshold
,
T
nms_threshold
,
size_t
num_priors
,
size_t
num_classes
,
std
::
vector
<
size_t
>*
indices
)
{
std
::
vector
<
std
::
pair
<
T
,
size_t
>>
scores
;
for
(
size_t
i
=
0
;
i
<
num_priors
;
++
i
)
{
size_t
conf_offset
=
i
*
num_classes
+
class_idx
;
if
(
conf_score_data
[
conf_offset
]
>
conf_threshold
)
scores
.
push_back
(
std
::
make_pair
(
conf_score_data
[
conf_offset
],
i
));
}
std
::
stable_sort
(
scores
.
begin
(),
scores
.
end
(),
sortScorePairDescend
<
T
,
size_t
>
);
if
(
top_k
>
0
&&
top_k
<
scores
.
size
())
scores
.
resize
(
top_k
);
while
(
scores
.
size
()
>
0
)
{
const
size_t
idx
=
scores
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
i
=
0
;
i
<
indices
->
size
();
++
i
)
{
if
(
keep
)
{
const
size_t
saved_idx
=
(
*
indices
)[
i
];
T
overlap
=
jaccardOverlap
<
T
>
(
bboxes
[
idx
],
bboxes
[
saved_idx
]);
keep
=
overlap
<=
nms_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
indices
->
push_back
(
idx
);
scores
.
erase
(
scores
.
begin
());
}
}
template
<
typename
T
>
int
getDetectionIndices
(
const
T
*
conf_data
,
const
size_t
num_priors
,
const
size_t
num_classes
,
const
size_t
background_label_id
,
const
size_t
batch_size
,
const
T
conf_threshold
,
const
size_t
nms_top_k
,
const
T
nms_threshold
,
const
size_t
top_k
,
const
std
::
vector
<
std
::
vector
<
BBox
<
T
>>>&
all_decoded_bboxes
,
std
::
vector
<
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>>*
all_detection_indices
)
{
int
total_keep_num
=
0
;
for
(
size_t
n
=
0
;
n
<
batch_size
;
++
n
)
{
const
std
::
vector
<
BBox
<
T
>>&
decoded_bboxes
=
all_decoded_bboxes
[
n
];
size_t
num_detected
=
0
;
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>
indices
;
size_t
conf_offset
=
n
*
num_priors
*
num_classes
;
for
(
size_t
c
=
0
;
c
<
num_classes
;
++
c
)
{
if
(
c
==
background_label_id
)
continue
;
applyNMSFast
<
T
>
(
decoded_bboxes
,
conf_data
+
conf_offset
,
c
,
nms_top_k
,
conf_threshold
,
nms_threshold
,
num_priors
,
num_classes
,
&
(
indices
[
c
]));
num_detected
+=
indices
[
c
].
size
();
}
if
(
top_k
>
0
&&
num_detected
>
top_k
)
{
// std::vector<pair<T,T>> score_index_pairs;
std
::
vector
<
std
::
pair
<
T
,
std
::
pair
<
size_t
,
size_t
>>>
score_index_pairs
;
for
(
size_t
c
=
0
;
c
<
num_classes
;
++
c
)
{
const
std
::
vector
<
size_t
>&
label_indices
=
indices
[
c
];
for
(
size_t
i
=
0
;
i
<
label_indices
.
size
();
++
i
)
{
size_t
idx
=
label_indices
[
i
];
score_index_pairs
.
push_back
(
std
::
make_pair
((
conf_data
+
conf_offset
)[
idx
*
num_classes
+
c
],
std
::
make_pair
(
c
,
idx
)));
}
}
std
::
sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
sortScorePairDescend
<
T
,
std
::
pair
<
size_t
,
size_t
>>
);
score_index_pairs
.
resize
(
top_k
);
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>
new_indices
;
for
(
size_t
i
=
0
;
i
<
score_index_pairs
.
size
();
++
i
)
{
size_t
label
=
score_index_pairs
[
i
].
second
.
first
;
size_t
idx
=
score_index_pairs
[
i
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
all_detection_indices
->
push_back
(
new_indices
);
total_keep_num
+=
top_k
;
}
else
{
all_detection_indices
->
push_back
(
indices
);
total_keep_num
+=
num_detected
;
}
}
return
total_keep_num
;
}
template
<
typename
T
>
BBox
<
T
>
clipBBox
(
const
BBox
<
T
>&
bbox
)
{
T
one
=
static_cast
<
T
>
(
1.0
);
T
zero
=
static_cast
<
T
>
(
0.0
);
BBox
<
T
>
clipped_bbox
;
clipped_bbox
.
x_min
=
std
::
max
(
std
::
min
(
bbox
.
x_min
,
one
),
zero
);
clipped_bbox
.
y_min
=
std
::
max
(
std
::
min
(
bbox
.
y_min
,
one
),
zero
);
clipped_bbox
.
x_max
=
std
::
max
(
std
::
min
(
bbox
.
x_max
,
one
),
zero
);
clipped_bbox
.
y_max
=
std
::
max
(
std
::
min
(
bbox
.
y_max
,
one
),
zero
);
return
clipped_bbox
;
}
template
<
typename
T
>
void
getDetectionOutput
(
const
T
*
conf_data
,
const
size_t
num_kept
,
const
size_t
num_priors
,
const
size_t
num_classes
,
const
size_t
batch_size
,
const
std
::
vector
<
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>>&
all_indices
,
const
std
::
vector
<
std
::
vector
<
BBox
<
T
>>>&
all_decoded_bboxes
,
T
*
out_data
)
{
size_t
count
=
0
;
for
(
size_t
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>::
const_iterator
it
=
all_indices
[
n
].
begin
();
it
!=
all_indices
[
n
].
end
();
++
it
)
{
size_t
label
=
it
->
first
;
const
std
::
vector
<
size_t
>&
indices
=
it
->
second
;
const
std
::
vector
<
BBox
<
T
>>&
decoded_bboxes
=
all_decoded_bboxes
[
n
];
for
(
size_t
i
=
0
;
i
<
indices
.
size
();
++
i
)
{
size_t
idx
=
indices
[
i
];
size_t
conf_offset
=
n
*
num_priors
*
num_classes
+
idx
*
num_classes
;
out_data
[
count
*
7
]
=
n
;
out_data
[
count
*
7
+
1
]
=
label
;
out_data
[
count
*
7
+
2
]
=
(
conf_data
+
conf_offset
)[
label
];
BBox
<
T
>
clipped_bbox
=
clipBBox
<
T
>
(
decoded_bboxes
[
idx
]);
out_data
[
count
*
7
+
3
]
=
clipped_bbox
.
x_min
;
out_data
[
count
*
7
+
4
]
=
clipped_bbox
.
y_min
;
out_data
[
count
*
7
+
5
]
=
clipped_bbox
.
x_max
;
out_data
[
count
*
7
+
6
]
=
clipped_bbox
.
y_max
;
++
count
;
}
}
}
// out.copyFrom(out_data, num_kept * 7);
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录