Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c9823094
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c9823094
编写于
8月 31, 2022
作者:
Z
zhiboniu
提交者:
GitHub
8月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pose3d metro datasets part (#6611)
* pose3d metro datasets * delete extra comment lines
上级
7b6bdf91
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
364 addition
and
13 deletion
+364
-13
ppdet/data/source/__init__.py
ppdet/data/source/__init__.py
+1
-0
ppdet/data/source/category.py
ppdet/data/source/category.py
+3
-0
ppdet/data/source/pose3d_cmb.py
ppdet/data/source/pose3d_cmb.py
+191
-0
ppdet/data/transform/keypoint_operators.py
ppdet/data/transform/keypoint_operators.py
+169
-13
未找到文件。
ppdet/data/source/__init__.py
浏览文件 @
c9823094
...
@@ -28,3 +28,4 @@ from .keypoint_coco import *
...
@@ -28,3 +28,4 @@ from .keypoint_coco import *
from
.mot
import
*
from
.mot
import
*
from
.sniper_coco
import
SniperCOCODataSet
from
.sniper_coco
import
SniperCOCODataSet
from
.dataset
import
ImageFolder
from
.dataset
import
ImageFolder
from
.pose3d_cmb
import
Pose3DDataset
ppdet/data/source/category.py
浏览文件 @
c9823094
...
@@ -118,6 +118,9 @@ def get_categories(metric_type, anno_file=None, arch=None):
...
@@ -118,6 +118,9 @@ def get_categories(metric_type, anno_file=None, arch=None):
)
==
'keypointtopdownmpiieval'
:
)
==
'keypointtopdownmpiieval'
:
return
(
None
,
{
'id'
:
'keypoint'
})
return
(
None
,
{
'id'
:
'keypoint'
})
elif
metric_type
.
lower
()
==
'pose3deval'
:
return
(
None
,
{
'id'
:
'pose3d'
})
elif
metric_type
.
lower
()
in
[
'mot'
,
'motdet'
,
'reid'
]:
elif
metric_type
.
lower
()
in
[
'mot'
,
'motdet'
,
'reid'
]:
if
anno_file
and
os
.
path
.
isfile
(
anno_file
):
if
anno_file
and
os
.
path
.
isfile
(
anno_file
):
cats
=
[]
cats
=
[]
...
...
ppdet/data/source/pose3d_cmb.py
0 → 100644
浏览文件 @
c9823094
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
this code is base on https://github.com/open-mmlab/mmpose
"""
import
os
import
cv2
import
numpy
as
np
import
json
import
copy
import
pycocotools
from
pycocotools.coco
import
COCO
from
.dataset
import
DetDataset
from
ppdet.core.workspace
import
register
,
serializable
@
serializable
class
Pose3DDataset
(
DetDataset
):
"""Pose3D Dataset class.
Args:
dataset_dir (str): Root path to the dataset.
anno_list (list of str): each of the element is a relative path to the annotation file.
image_dirs (list of str): each of path is a relative path where images are held.
transform (composed(operators)): A sequence of data transforms.
test_mode (bool): Store True when building test or
validation dataset. Default: False.
24 joints order:
0-2: 'R_Ankle', 'R_Knee', 'R_Hip',
3-5:'L_Hip', 'L_Knee', 'L_Ankle',
6-8:'R_Wrist', 'R_Elbow', 'R_Shoulder',
9-11:'L_Shoulder','L_Elbow','L_Wrist',
12-14:'Neck','Top_of_Head','Pelvis',
15-18:'Thorax','Spine','Jaw','Head',
19-23:'Nose','L_Eye','R_Eye','L_Ear','R_Ear'
"""
def
__init__
(
self
,
dataset_dir
,
image_dirs
,
anno_list
,
transform
=
[],
num_joints
=
24
,
test_mode
=
False
):
super
().
__init__
(
dataset_dir
,
image_dirs
,
anno_list
)
self
.
image_info
=
{}
self
.
ann_info
=
{}
self
.
num_joints
=
num_joints
self
.
transform
=
transform
self
.
test_mode
=
test_mode
self
.
img_ids
=
[]
self
.
dataset_dir
=
dataset_dir
self
.
image_dirs
=
image_dirs
self
.
anno_list
=
anno_list
def
get_mask
(
self
,
mvm_percent
=
0.3
):
num_joints
=
self
.
num_joints
mjm_mask
=
np
.
ones
((
num_joints
,
1
)).
astype
(
np
.
float
)
if
self
.
test_mode
==
False
:
pb
=
np
.
random
.
random_sample
()
masked_num
=
int
(
pb
*
mvm_percent
*
num_joints
)
# at most x% of the joints could be masked
indices
=
np
.
random
.
choice
(
np
.
arange
(
num_joints
),
replace
=
False
,
size
=
masked_num
)
mjm_mask
[
indices
,
:]
=
0.0
mvm_mask
=
np
.
ones
((
10
,
1
)).
astype
(
np
.
float
)
if
self
.
test_mode
==
False
:
num_vertices
=
10
pb
=
np
.
random
.
random_sample
()
masked_num
=
int
(
pb
*
mvm_percent
*
num_vertices
)
# at most x% of the vertices could be masked
indices
=
np
.
random
.
choice
(
np
.
arange
(
num_vertices
),
replace
=
False
,
size
=
masked_num
)
mvm_mask
[
indices
,
:]
=
0.0
mjm_mask
=
np
.
concatenate
([
mjm_mask
,
mvm_mask
],
axis
=
0
)
return
mjm_mask
def
filterjoints
(
self
,
x
):
if
self
.
num_joints
==
24
:
return
x
elif
self
.
num_joints
==
14
:
return
x
[[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
18
],
:]
elif
self
.
num_joints
==
17
:
return
x
[
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
14
,
15
,
18
,
19
],
:]
else
:
raise
ValueError
(
"unsupported joint numbers, only [24 or 17 or 14] is supported!"
)
def
parse_dataset
(
self
):
print
(
"Loading annotations..., please wait"
)
self
.
annos
=
[]
im_id
=
0
for
idx
,
annof
in
enumerate
(
self
.
anno_list
):
img_prefix
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
image_dirs
[
idx
])
dataf
=
os
.
path
.
join
(
self
.
dataset_dir
,
annof
)
with
open
(
dataf
,
'r'
)
as
rf
:
anno_data
=
json
.
load
(
rf
)
annos
=
anno_data
[
'data'
]
new_annos
=
[]
print
(
"{} has annos numbers: {}"
.
format
(
dataf
,
len
(
annos
)))
for
anno
in
annos
:
new_anno
=
{}
new_anno
[
'im_id'
]
=
im_id
im_id
+=
1
imagename
=
anno
[
'imageName'
]
if
imagename
.
startswith
(
"COCO_train2014_"
):
imagename
=
imagename
[
len
(
"COCO_train2014_"
):]
elif
imagename
.
startswith
(
"COCO_val2014_"
):
imagename
=
imagename
[
len
(
"COCO_val2014_"
):]
imagename
=
os
.
path
.
join
(
img_prefix
,
imagename
)
if
not
os
.
path
.
exists
(
imagename
):
if
"train2017"
in
imagename
:
imagename
=
imagename
.
replace
(
"train2017"
,
"val2017"
)
if
not
os
.
path
.
exists
(
imagename
):
print
(
"cannot find imagepath:{}"
.
format
(
imagename
))
continue
else
:
print
(
"cannot find imagepath:{}"
.
format
(
imagename
))
continue
new_anno
[
'imageName'
]
=
imagename
new_anno
[
'bbox_center'
]
=
anno
[
'bbox_center'
]
new_anno
[
'bbox_scale'
]
=
anno
[
'bbox_scale'
]
new_anno
[
'joints_2d'
]
=
np
.
array
(
anno
[
'gt_keypoint_2d'
]).
astype
(
np
.
float32
)
if
new_anno
[
'joints_2d'
].
shape
[
0
]
==
49
:
#if the joints_2d is in SPIN format(which generated by eft), choose the last 24 public joints
#for detail please refer: https://github.com/nkolot/SPIN/blob/master/constants.py
new_anno
[
'joints_2d'
]
=
new_anno
[
'joints_2d'
][
25
:]
new_anno
[
'joints_3d'
]
=
np
.
array
(
anno
[
'pose3d'
])[:,
:
3
].
astype
(
np
.
float32
)
new_anno
[
'mjm_mask'
]
=
self
.
get_mask
()
if
not
'has_3d_joints'
in
anno
:
new_anno
[
'has_3d_joints'
]
=
int
(
1
)
new_anno
[
'has_2d_joints'
]
=
int
(
1
)
else
:
new_anno
[
'has_3d_joints'
]
=
int
(
anno
[
'has_3d_joints'
])
new_anno
[
'has_2d_joints'
]
=
int
(
anno
[
'has_2d_joints'
])
new_anno
[
'joints_2d'
]
=
self
.
filterjoints
(
new_anno
[
'joints_2d'
])
self
.
annos
.
append
(
new_anno
)
del
annos
def
__len__
(
self
):
"""Get dataset length."""
return
len
(
self
.
annos
)
def
_get_imganno
(
self
,
idx
):
"""Get anno for a single image."""
return
self
.
annos
[
idx
]
def
__getitem__
(
self
,
idx
):
"""Prepare image for training given the index."""
records
=
copy
.
deepcopy
(
self
.
_get_imganno
(
idx
))
imgpath
=
records
[
'imageName'
]
assert
os
.
path
.
exists
(
imgpath
),
"cannot find image {}"
.
format
(
imgpath
)
records
[
'image'
]
=
cv2
.
imread
(
imgpath
)
records
[
'image'
]
=
cv2
.
cvtColor
(
records
[
'image'
],
cv2
.
COLOR_BGR2RGB
)
records
=
self
.
transform
(
records
)
return
records
def
check_or_download_dataset
(
self
):
alldatafind
=
True
for
image_dir
in
self
.
image_dirs
:
image_dir
=
os
.
path
.
join
(
self
.
dataset_dir
,
image_dir
)
if
not
os
.
path
.
isdir
(
image_dir
):
print
(
"dataset [{}] is not found"
.
format
(
image_dir
))
alldatafind
=
False
if
not
alldatafind
:
raise
ValueError
(
"Some dataset is not valid and cannot download automatically now, please prepare the dataset first"
)
ppdet/data/transform/keypoint_operators.py
浏览文件 @
c9823094
...
@@ -36,19 +36,12 @@ logger = setup_logger(__name__)
...
@@ -36,19 +36,12 @@ logger = setup_logger(__name__)
registered_ops
=
[]
registered_ops
=
[]
__all__
=
[
__all__
=
[
'RandomAffine'
,
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'KeyPointFlip'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'TagGenerate'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'ToHeatmaps'
,
'ToHeatmapsTopDown_UDP'
,
'TopDownEvalAffine'
,
'NormalizePermute'
,
'AugmentationbyInformantionDropping'
,
'SinglePoseAffine'
,
'NoiseJitter'
,
'EvalAffine'
,
'FlipPose'
'RandomFlipHalfBodyTransform'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'ToHeatmapsTopDown_UDP'
,
'TopDownEvalAffine'
,
'AugmentationbyInformantionDropping'
,
]
]
...
@@ -618,6 +611,169 @@ class TopDownAffine(object):
...
@@ -618,6 +611,169 @@ class TopDownAffine(object):
return
records
return
records
@
register_keypointop
class
SinglePoseAffine
(
object
):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
trainsize
,
rotate
=
[
1.0
,
30
],
scale
=
[
1.0
,
0.25
],
use_udp
=
False
):
self
.
trainsize
=
trainsize
self
.
use_udp
=
use_udp
self
.
rot_prob
=
rotate
[
0
]
self
.
rot_range
=
rotate
[
1
]
self
.
scale_prob
=
scale
[
0
]
self
.
scale_ratio
=
scale
[
1
]
def
__call__
(
self
,
records
):
image
=
records
[
'image'
]
if
'joints_2d'
in
records
:
joints
=
records
[
'joints_2d'
]
if
'joints_2d'
in
records
else
None
joints_vis
=
records
[
'joints_vis'
]
if
'joints_vis'
in
records
else
np
.
ones
(
(
len
(
joints
),
1
))
rot
=
0
s
=
1.
if
np
.
random
.
random
()
<
self
.
rot_prob
:
rot
=
np
.
clip
(
np
.
random
.
randn
()
*
self
.
rot_range
,
-
self
.
rot_range
*
2
,
self
.
rot_range
*
2
)
if
np
.
random
.
random
()
<
self
.
scale_prob
:
s
=
np
.
clip
(
np
.
random
.
randn
()
*
self
.
scale_ratio
+
1
,
1
-
self
.
scale_ratio
,
1
+
self
.
scale_ratio
)
if
self
.
use_udp
:
trans
=
get_warp_matrix
(
rot
,
np
.
array
(
records
[
'bbox_center'
])
*
2.0
,
[
self
.
trainsize
[
0
]
-
1.0
,
self
.
trainsize
[
1
]
-
1.0
],
records
[
'bbox_scale'
]
*
200.0
*
s
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
if
'joints_2d'
in
records
:
joints
[:,
0
:
2
]
=
warp_affine_joints
(
joints
[:,
0
:
2
].
copy
(),
trans
)
else
:
trans
=
get_affine_transform
(
np
.
array
(
records
[
'bbox_center'
]),
records
[
'bbox_scale'
]
*
s
*
200
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
if
'joints_2d'
in
records
:
for
i
in
range
(
len
(
joints
)):
if
joints_vis
[
i
,
0
]
>
0.0
:
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans
)
if
'joints_3d'
in
records
:
pose3d
=
records
[
'joints_3d'
]
if
not
rot
==
0
:
trans_3djoints
=
np
.
eye
(
3
)
rot_rad
=
-
rot
*
np
.
pi
/
180
sn
,
cs
=
np
.
sin
(
rot_rad
),
np
.
cos
(
rot_rad
)
trans_3djoints
[
0
,
:
2
]
=
[
cs
,
-
sn
]
trans_3djoints
[
1
,
:
2
]
=
[
sn
,
cs
]
pose3d
[:,
:
3
]
=
np
.
einsum
(
'ij,kj->ki'
,
trans_3djoints
,
pose3d
[:,
:
3
])
records
[
'joints_3d'
]
=
pose3d
records
[
'image'
]
=
image
if
'joints_2d'
in
records
:
records
[
'joints_2d'
]
=
joints
return
records
@
register_keypointop
class
NoiseJitter
(
object
):
"""apply NoiseJitter to image
Args:
noise_factor (float): the noise factor ratio used to generate the jitter
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
noise_factor
=
0.4
):
self
.
noise_factor
=
noise_factor
def
__call__
(
self
,
records
):
self
.
pn
=
np
.
random
.
uniform
(
1
-
self
.
noise_factor
,
1
+
self
.
noise_factor
,
3
)
rgb_img
=
records
[
'image'
]
rgb_img
[:,
:,
0
]
=
np
.
minimum
(
255.0
,
np
.
maximum
(
0.0
,
rgb_img
[:,
:,
0
]
*
self
.
pn
[
0
]))
rgb_img
[:,
:,
1
]
=
np
.
minimum
(
255.0
,
np
.
maximum
(
0.0
,
rgb_img
[:,
:,
1
]
*
self
.
pn
[
1
]))
rgb_img
[:,
:,
2
]
=
np
.
minimum
(
255.0
,
np
.
maximum
(
0.0
,
rgb_img
[:,
:,
2
]
*
self
.
pn
[
2
]))
records
[
'image'
]
=
rgb_img
return
records
@
register_keypointop
class
FlipPose
(
object
):
"""random apply flip to image
Args:
noise_factor (float): the noise factor ratio used to generate the jitter
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
flip_prob
=
0.5
,
img_res
=
224
,
num_joints
=
14
):
self
.
flip_pob
=
flip_prob
self
.
img_res
=
img_res
if
num_joints
==
24
:
self
.
perm
=
[
5
,
4
,
3
,
2
,
1
,
0
,
11
,
10
,
9
,
8
,
7
,
6
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
21
,
20
,
23
,
22
]
elif
num_joints
==
14
:
self
.
perm
=
[
5
,
4
,
3
,
2
,
1
,
0
,
11
,
10
,
9
,
8
,
7
,
6
,
12
,
13
]
else
:
print
(
"error num_joints in flip :{}"
.
format
(
num_joints
))
def
__call__
(
self
,
records
):
if
np
.
random
.
random
()
<
self
.
flip_pob
:
img
=
records
[
'image'
]
img
=
np
.
fliplr
(
img
)
if
'joints_2d'
in
records
:
joints_2d
=
records
[
'joints_2d'
]
joints_2d
=
joints_2d
[
self
.
perm
]
joints_2d
[:,
0
]
=
self
.
img_res
-
joints_2d
[:,
0
]
records
[
'joints_2d'
]
=
joints_2d
if
'joints_3d'
in
records
:
joints_3d
=
records
[
'joints_3d'
]
joints_3d
=
joints_3d
[
self
.
perm
]
joints_3d
[:,
0
]
=
-
joints_3d
[:,
0
]
records
[
'joints_3d'
]
=
joints_3d
records
[
'image'
]
=
img
return
records
@
register_keypointop
@
register_keypointop
class
TopDownEvalAffine
(
object
):
class
TopDownEvalAffine
(
object
):
"""apply affine transform to image and coords
"""apply affine transform to image and coords
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录