Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c7ef5eb0
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7ef5eb0
编写于
8月 08, 2021
作者:
C
cnn
提交者:
GitHub
8月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix detach bug (#3912)
上级
08bc9e89
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
20 addition
and
24 deletion
+20
-24
configs/dota/README.md
configs/dota/README.md
+2
-1
configs/dota/s2anet_1x_spine.yml
configs/dota/s2anet_1x_spine.yml
+1
-0
configs/dota/s2anet_alignconv_2x_dota.yml
configs/dota/s2anet_alignconv_2x_dota.yml
+1
-0
configs/dota/s2anet_conv_2x_dota.yml
configs/dota/s2anet_conv_2x_dota.yml
+1
-0
ppdet/modeling/heads/s2anet_head.py
ppdet/modeling/heads/s2anet_head.py
+15
-23
未找到文件。
configs/dota/README.md
浏览文件 @
c7ef5eb0
...
...
@@ -121,7 +121,7 @@ python3.7 tools/infer.py -c configs/dota/s2anet_1x_spine.yml -o weights=output/s
### 5. DOTA数据评估
执行如下命令,会在
`output`
文件夹下将每个图像预测结果保存到同文件夹名的txt文本中。
```
python3.7 tools/infer.py -c configs/dota/s2anet_
1x_dota.yml -o weights=./weights/s2anet_1
x_dota.pdparams --infer_dir=dota_test_images --draw_threshold=0.05 --save_txt=True --output_dir=output
python3.7 tools/infer.py -c configs/dota/s2anet_
alignconv_2x_dota.yml -o weights=./weights/s2anet_alignconv_2
x_dota.pdparams --infer_dir=dota_test_images --draw_threshold=0.05 --save_txt=True --output_dir=output
```
请参考
[
DOTA_devkit
](
https://github.com/CAPTAIN-WHU/DOTA_devkit
)
生成评估文件,评估文件格式请参考
[
DOTA Test
](
http://captain.whu.edu.cn/DOTAweb/tasks.html
)
,生成zip文件,每个类一个txt文件,txt文件中每行格式为:
`image_id score x1 y1 x2 y2 x3 y3 x4 y4`
,提交服务器进行评估。
...
...
@@ -144,6 +144,7 @@ Paddle中`multiclass_nms`算子的输入支持四边形输入,因此部署时
部署教程请参考
[
预测部署
](
../../deploy/README.md
)
**注意:**
由于paddle.detach函数动转静时会导致导出模型尺寸错误,因此在配置文件中增加了
`is_training`
参数,导出模型预测部署时需要将改参数设置为
`False`
## Citations
```
...
...
configs/dota/s2anet_1x_spine.yml
浏览文件 @
c7ef5eb0
...
...
@@ -27,3 +27,4 @@ S2ANetHead:
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
reg_loss_type
:
'
l1'
is_training
:
True
configs/dota/s2anet_alignconv_2x_dota.yml
浏览文件 @
c7ef5eb0
...
...
@@ -24,3 +24,4 @@ S2ANetHead:
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
reg_loss_type
:
'
l1'
is_training
:
True
configs/dota/s2anet_conv_2x_dota.yml
浏览文件 @
c7ef5eb0
...
...
@@ -21,3 +21,4 @@ S2ANetHead:
use_sigmoid_cls
:
True
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.1
]
cls_loss_weight
:
[
1.1
,
1.05
]
is_training
:
True
ppdet/modeling/heads/s2anet_head.py
浏览文件 @
c7ef5eb0
...
...
@@ -228,9 +228,10 @@ class S2ANetHead(nn.Layer):
align_conv_size
=
3
,
use_sigmoid_cls
=
True
,
anchor_assign
=
RBoxAssigner
().
__dict__
,
reg_loss_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
cls_loss_weight
=
[
1.0
,
1.0
],
reg_loss_type
=
'l1'
):
reg_loss_weight
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.1
],
cls_loss_weight
=
[
1.1
,
1.05
],
reg_loss_type
=
'l1'
,
is_training
=
True
):
super
(
S2ANetHead
,
self
).
__init__
()
self
.
stacked_convs
=
stacked_convs
self
.
feat_in
=
feat_in
...
...
@@ -256,6 +257,7 @@ class S2ANetHead(nn.Layer):
self
.
alpha
=
1.0
self
.
beta
=
1.0
self
.
reg_loss_type
=
reg_loss_type
self
.
is_training
=
is_training
self
.
s2anet_head_out
=
None
...
...
@@ -446,10 +448,12 @@ class S2ANetHead(nn.Layer):
init_anchors
=
self
.
rect2rbox
(
init_anchors
)
self
.
base_anchors_list
.
append
(
init_anchors
)
fam_reg1
=
fam_reg
fam_reg1
.
stop_gradient
=
True
refine_anchor
=
self
.
bbox_decode
(
fam_reg1
,
init_anchors
)
#refine_anchor = self.bbox_decode(fam_reg.detach(), init_anchors)
if
self
.
is_training
:
refine_anchor
=
self
.
bbox_decode
(
fam_reg
.
detach
(),
init_anchors
)
else
:
fam_reg1
=
fam_reg
.
clone
()
fam_reg1
.
stop_gradient
=
True
refine_anchor
=
self
.
bbox_decode
(
fam_reg1
,
init_anchors
)
self
.
refine_anchor_list
.
append
(
refine_anchor
)
...
...
@@ -615,19 +619,13 @@ class S2ANetHead(nn.Layer):
iou
=
rbox_iou
(
fam_bbox_decode
,
bbox_gt_bboxes
)
iou
=
paddle
.
diag
(
iou
)
if
reg_loss_type
==
'iou'
:
EPS
=
paddle
.
to_tensor
(
1e-8
,
dtype
=
'float32'
,
stop_gradient
=
True
)
iou_factor
=
-
1.0
*
paddle
.
log
(
iou
+
EPS
)
/
(
fam_bbox
+
EPS
)
iou_factor
.
stop_gradient
=
True
#fam_bbox = fam_bbox * iou_factor
elif
reg_loss_type
==
'gwd'
:
if
reg_loss_type
==
'gwd'
:
bbox_gt_bboxes_level
=
bbox_gt_bboxes
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
fam_bbox_total
=
self
.
gwd_loss
(
fam_bbox_decode
,
bbox_gt_bboxes_level
)
fam_bbox_total
=
fam_bbox_total
*
feat_bbox_weights
fam_bbox_total
=
paddle
.
sum
(
fam_bbox_total
)
fam_bbox_total
=
paddle
.
sum
(
fam_bbox_total
)
/
num_total_samples
fam_bbox_losses
.
append
(
fam_bbox_total
)
st_idx
+=
feat_anchor_num
...
...
@@ -735,19 +733,13 @@ class S2ANetHead(nn.Layer):
iou
=
rbox_iou
(
odm_bbox_decode
,
bbox_gt_bboxes
)
iou
=
paddle
.
diag
(
iou
)
if
reg_loss_type
==
'iou'
:
EPS
=
paddle
.
to_tensor
(
1e-8
,
dtype
=
'float32'
,
stop_gradient
=
True
)
iou_factor
=
-
1.0
*
paddle
.
log
(
iou
+
EPS
)
/
(
odm_bbox
+
EPS
)
iou_factor
.
stop_gradient
=
True
# odm_bbox = odm_bbox * iou_factor
elif
reg_loss_type
==
'gwd'
:
if
reg_loss_type
==
'gwd'
:
bbox_gt_bboxes_level
=
bbox_gt_bboxes
[
st_idx
:
st_idx
+
feat_anchor_num
,
:]
odm_bbox_total
=
self
.
gwd_loss
(
odm_bbox_decode
,
bbox_gt_bboxes_level
)
odm_bbox_total
=
odm_bbox_total
*
feat_bbox_weights
odm_bbox_total
=
paddle
.
sum
(
odm_bbox_total
)
odm_bbox_total
=
paddle
.
sum
(
odm_bbox_total
)
/
num_total_samples
odm_bbox_losses
.
append
(
odm_bbox_total
)
st_idx
+=
feat_anchor_num
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录