Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c583fd34
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c583fd34
编写于
12月 03, 2018
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add downpour sgd wrapper for pslib
上级
0e4709da
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
95 addition
and
0 deletion
+95
-0
python/paddle/fluid/distributed/downpour.py
python/paddle/fluid/distributed/downpour.py
+34
-0
python/paddle/fluid/distributed/node.py
python/paddle/fluid/distributed/node.py
+61
-0
未找到文件。
python/paddle/fluid/distributed/downpour.py
0 → 100644
浏览文件 @
c583fd34
import
paddle.fluid
as
fluid
import
pslib_pb2
as
pslib
from
.node
import
DownpourServer
from
.node
import
DownpourWorker
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table
class
DownpourSGD
(
object
):
def
__init__
(
self
,
optimizer
=
opt
,
learning_rate
=
0.001
,
window
=
1
):
# todo(guru4elephant): if optimizer is not None, will warning here
self
.
learning_rate_
=
opt
.
learning_rate
self
.
window_
=
window
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
prefetch_slots
=
None
,
prefetch_slots_emb
=
None
):
params_grads
=
sorted
(
append_backward
(
loss
),
key
=
lambda
x
:
x
[
0
].
name
)
table_name
=
fluid_distributed_lookup_table
(
loss
.
block
.
program
)
server
=
DownpourServer
()
worker
=
DownpourWorker
()
server
.
add_sparse_table
(
0
,
learning_rate
,
prefetch_slots
,
prefetch_slots_emb
)
server
.
add_dense_table
(
1
,
learning_rate
,
params
,
grads
)
worker
.
add_sparse_table
(
0
,
learning_rate
,
prefetch_slots
,
prefetch_slots_emb
)
worker
.
add_dense_table
(
1
,
learning_rate
,
params
,
grads
)
ps_param
=
pslib
.
PSParameter
()
ps_param
.
server_param
.
CopyFrom
(
server
.
get_desc
())
ps_param
.
worker_param
.
CopyFrom
(
worker
.
get_desc
())
worker_skipped_ops
=
[
"lookup_table"
,
"lookup_table_grad"
]
return
[
solver_desc
,
parallel_desc
]
python/paddle/fluid/distributed/node.py
0 → 100644
浏览文件 @
c583fd34
import
paddle.fluid
as
fluid
import
pslib_pb2
as
pslib
class
Server
(
object
):
def
__init__
(
self
):
pass
class
Worker
(
object
):
def
__init__
(
self
):
pass
class
DownpourServer
(
Server
):
def
__init__
(
self
):
self
.
server_
=
pslib
.
ServerParameter
().
downpour_server_param
def
add_sparse_table
(
self
,
table_id
,
learning_rate
,
slot_key
,
slot_value_var
,
slot_grad_var
):
table
=
self
.
server_
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
type
=
PS_SPARSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourFeatureValueAccessor"
table
.
accessor
.
dense_sgd_param
.
adam
.
learning_rate
=
learning_rate
table
.
accessor
.
fea_dim
=
slot_value_var
[
0
].
shape
[
1
]
def
add_dense_table
(
self
,
table_id
,
learning_rate
,
param_var
,
grad_var
):
table
=
self
.
server_
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
type
=
PS_DENSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
sparse_sgd_param
.
learning_rate
=
learning_rate
table
.
accessor
.
fea_dim
=
reduce
(
lambda
x
,
y
:
x
.
shape
,
1
for
x
in
param_var
)
def
get_desc
(
self
):
return
self
.
server_
class
DownpourWorker
(
Worker
):
def
__init__
(
self
,
window
):
self
.
window
=
window
self
.
worker_
=
pslib
.
WorkerParameter
().
downpour_worker_param
self
.
worker_
.
pull_dense_per_batch
=
window
self
.
worker_
.
push_dense_per_batch
=
window
def
add_sparse_table
(
self
,
table_id
,
slot_keys
,
slot_value_vars
,
slot_grad_vars
):
table
=
self
.
worker_
.
sparse_table
.
add
()
table
.
table_id
=
table_id
table
.
slot
.
extend
(
slot_keys
)
self
.
worker_
.
extend
([
grad
.
name
for
grad
in
slot_grad_vars
])
def
add_dense_table
(
self
,
table_id
,
param_vars
,
grad_vars
):
table
=
self
.
worker_
.
dense_table
.
add
()
table
.
table_id
=
table_id
table
.
dense_variable_name
.
extend
([
p
.
name
for
p
in
param_vars
])
table
.
dense_gradient_variable_name
.
extend
([
g
.
name
for
g
in
grad_vars
])
def
get_desc
(
self
):
return
self
.
worker_
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录