Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
bbf98a01
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bbf98a01
编写于
3月 05, 2018
作者:
Q
qingqing01
提交者:
GitHub
3月 05, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the doc in detection_output API. (#8689)
* Refine the doc in detection_output API. * Refine the doc.
上级
bb60e920
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
19 addition
and
5 deletion
+19
-5
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+19
-5
未找到文件。
python/paddle/fluid/layers/detection.py
浏览文件 @
bbf98a01
...
...
@@ -54,11 +54,17 @@ def detection_output(loc,
score_threshold
=
0.01
,
nms_eta
=
1.0
):
"""
**Detection Output Layer**
**Detection Output Layer
for Single Shot Multibox Detector (SSD).
**
This layer applies the NMS to the output of network and computes the
predict bounding box location. The output's shape of this layer could
be zero if there is no valid bounding box.
This operation is to get the detection results by performing following
two steps:
1. Decode input bounding box predictions according to the prior boxes.
2. Get the final detection results by applying multi-class non maximum
suppression (NMS).
Please note, this operation doesn't clip the final output bounding boxes
to the image window.
Args:
loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
...
...
@@ -91,7 +97,15 @@ def detection_output(loc,
nms_eta(float): The parameter for adaptive NMS.
Returns:
The detected bounding boxes which are a Tensor.
Variable: The detection outputs is a LoDTensor with shape [No, 6].
Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
`No` is the total number of detections in this mini-batch. For each
instance, the offsets in first dimension are called LoD, the offset
number is N + 1, N is the batch size. The i-th image has
`LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
has no detected results. If all images have not detected results,
all the elements in LoD are 0, and output tensor only contains one
value, which is -1.
Examples:
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录