Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
b55dd32e
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b55dd32e
编写于
3月 25, 2019
作者:
X
Xin Pan
提交者:
GitHub
3月 25, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16394 from panyx0718/imperative2
Add DeepCF model
上级
f9061796
55a7b981
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
197 addition
and
1 deletion
+197
-1
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+196
-0
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+1
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
0 → 100644
浏览文件 @
b55dd32e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
random
import
sys
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
NUM_USERS
=
100
NUM_ITEMS
=
1000
BATCH_SIZE
=
32
NUM_BATCHES
=
2
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_user_layers
=
[]
self
.
_item_layers
=
[]
self
.
_hid_sizes
=
[
128
,
64
]
for
i
in
range
(
len
(
self
.
_hid_sizes
)):
self
.
_user_layers
.
append
(
self
.
add_sublayer
(
'user_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
self
.
_item_layers
.
append
(
self
.
add_sublayer
(
'item_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
def
forward
(
self
,
users
,
items
):
users
=
self
.
_user_latent
(
users
)
items
=
self
.
_item_latent
(
items
)
for
ul
,
il
in
zip
(
self
.
_user_layers
,
self
.
_item_layers
):
users
=
ul
(
users
)
items
=
il
(
items
)
return
fluid
.
layers
.
elementwise_mul
(
users
,
items
)
class
DMF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DMF
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_match_layers
=
[]
self
.
_hid_sizes
=
[
128
,
64
]
for
i
in
range
(
len
(
self
.
_hid_sizes
)):
self
.
_match_layers
.
append
(
self
.
add_sublayer
(
'match_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
self
.
_mat
def
forward
(
self
,
users
,
items
):
users
=
self
.
_user_latent
(
users
)
items
=
self
.
_item_latent
(
items
)
match_vec
=
fluid
.
layers
.
concat
(
[
users
,
items
],
axis
=
len
(
users
.
shape
)
-
1
)
for
l
in
self
.
_match_layers
:
match_vec
=
l
(
match_vec
)
return
match_vec
class
DeepCF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DeepCF
,
self
).
__init__
(
name_scope
)
self
.
_user_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_USERS
,
256
])
self
.
_item_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_ITEMS
,
256
])
self
.
_mlp
=
MLP
(
self
.
full_name
())
self
.
_dmf
=
DMF
(
self
.
full_name
())
self
.
_match_fc
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
1
,
act
=
'sigmoid'
)
def
forward
(
self
,
users
,
items
):
users_emb
=
self
.
_user_emb
(
users
)
items_emb
=
self
.
_item_emb
(
items
)
mlp_predictive
=
self
.
_mlp
(
users_emb
,
items_emb
)
dmf_predictive
=
self
.
_dmf
(
users_emb
,
items_emb
)
predictive
=
fluid
.
layers
.
concat
(
[
mlp_predictive
,
dmf_predictive
],
axis
=
len
(
mlp_predictive
.
shape
)
-
1
)
prediction
=
self
.
_match_fc
(
predictive
)
return
prediction
def
get_data
():
user_ids
=
[]
item_ids
=
[]
labels
=
[]
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
# 10% positive
label
=
float
(
random
.
randint
(
1
,
10
)
==
1
)
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
indices
=
np
.
arange
(
NUM_USERS
*
NUM_ITEMS
)
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int64
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int64
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
)
class
TestImperativeDeepCF
(
unittest
.
TestCase
):
def
test_gan_float32
(
self
):
seed
=
90
users_np
,
items_np
,
labels_np
=
get_data
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
main
=
fluid
.
Program
()
main
.
random_seed
=
seed
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
main
=
main
,
startup
=
startup
,
scope
=
scope
):
users
=
fluid
.
layers
.
data
(
'users'
,
[
1
],
dtype
=
'int64'
)
items
=
fluid
.
layers
.
data
(
'items'
,
[
1
],
dtype
=
'int64'
)
labels
=
fluid
.
layers
.
data
(
'labels'
,
[
1
],
dtype
=
'float32'
)
deepcf
=
DeepCF
(
'deepcf'
)
prediction
=
deepcf
(
users
,
items
)
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
labels
))
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
deepcf
=
DeepCF
(
'deepcf'
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
loss
.
_backward
()
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
dy_loss
=
loss
.
_numpy
()
self
.
assertEqual
(
static_loss
,
dy_loss
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
b55dd32e
...
...
@@ -51,7 +51,7 @@ class Generator(fluid.imperative.Layer):
return
self
.
_fc3
(
x
)
class
TestImperative
Mnist
(
unittest
.
TestCase
):
class
TestImperative
GAN
(
unittest
.
TestCase
):
def
test_gan_float32
(
self
):
seed
=
90
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录