提交 b1b71eab 编写于 作者: S superjom

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into rnn_forward_result_test

...@@ -24,4 +24,5 @@ cmake-build-* ...@@ -24,4 +24,5 @@ cmake-build-*
python/paddle/v2/framework/core.so python/paddle/v2/framework/core.so
CMakeFiles CMakeFiles
cmake_install.cmake cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
...@@ -37,8 +37,8 @@ before_install: ...@@ -37,8 +37,8 @@ before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi - if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python # Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version. # protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker - pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- pip install rarfile - pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash - curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter - go get -u github.com/alecthomas/gometalinter
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
cmake_minimum_required(VERSION 3.0) cmake_minimum_required(VERSION 3.0)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake") set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
set(PROJ_ROOT ${CMAKE_CURRENT_SOURCE_DIR}) set(PADDLE_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR})
set(PROJ_BINARY_ROOT ${CMAKE_CURRENT_BINARY_DIR}) set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
include(system) include(system)
...@@ -36,8 +36,8 @@ include(simd) ...@@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND}) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF)
option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND}) option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF)
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
...@@ -121,8 +121,8 @@ include(version) # set PADDLE_VERSION ...@@ -121,8 +121,8 @@ include(version) # set PADDLE_VERSION
include(coveralls) # set code coverage include(coveralls) # set code coverage
include_directories("${PROJ_ROOT}") include_directories("${PADDLE_SOURCE_DIR}")
include_directories("${PROJ_ROOT}/paddle/cuda/include") include_directories("${PADDLE_SOURCE_DIR}/paddle/cuda/include")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/proto") include_directories("${CMAKE_CURRENT_BINARY_DIR}/proto")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/go/pserver/client/c") include_directories("${CMAKE_CURRENT_BINARY_DIR}/go/pserver/client/c")
include_directories(${Boost_INCLUDE_DIRS}) include_directories(${Boost_INCLUDE_DIRS})
...@@ -144,7 +144,7 @@ if(WITH_GPU) ...@@ -144,7 +144,7 @@ if(WITH_GPU)
endif(WITH_GPU) endif(WITH_GPU)
if(WITH_MKLDNN) if(WITH_MKLDNN)
list(APPEND EXTERNAL_LIBS ${MKLDNN_LIBRARY} ${MKLDNN_IOMP_LIB}) list(APPEND EXTERNAL_LIBS ${MKLDNN_LIB} ${MKLDNN_IOMP_LIB})
endif() endif()
if(USE_NNPACK) if(USE_NNPACK)
...@@ -164,10 +164,12 @@ if(WITH_GOLANG) ...@@ -164,10 +164,12 @@ if(WITH_GOLANG)
add_subdirectory(go) add_subdirectory(go)
endif(WITH_GOLANG) endif(WITH_GOLANG)
set(PADDLE_PYTHON_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/python/build")
add_subdirectory(paddle) add_subdirectory(paddle)
if(WITH_PYTHON) if(WITH_PYTHON)
add_subdirectory(python) add_subdirectory(python)
endif() endif()
if(WITH_DOC) if(WITH_DOC)
add_subdirectory(doc) add_subdirectory(doc)
endif() endif()
...@@ -28,7 +28,7 @@ RUN apt-get update && \ ...@@ -28,7 +28,7 @@ RUN apt-get update && \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \ curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib gcc-4.8 g++-4.8 \ python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format-3.8 swig doxygen cmake \ automake locales clang-format swig doxygen cmake \
liblapack-dev liblapacke-dev libboost-dev \ liblapack-dev liblapacke-dev libboost-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \ clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools && \ net-tools && \
...@@ -64,13 +64,28 @@ RUN pip install --upgrade pip && \ ...@@ -64,13 +64,28 @@ RUN pip install --upgrade pip && \
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \ pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install pre-commit 'requests==2.9.2' 'ipython==5.3.0' && \ pip install pre-commit 'requests==2.9.2' 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install rarfile pip install opencv-python rarfile 'scipy>=0.19.0' 'nltk>=3.2.2'
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use # To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2 # the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev RUN apt-get install -y libssl-dev libffi-dev
RUN pip install certifi urllib3[secure] RUN pip install certifi urllib3[secure]
# TODO(qijun) The template library Eigen doesn't work well with GCC 5
# coming with the default Docker image, so we switch to use GCC 4.8
# by default. And I will check Eigen library later.
RUN ln -sf gcc-4.8 /usr/bin/gcc && \
ln -sf gcc-ar-4.8 /usr/bin/gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/gcc-ranlib && \
ln -sf gcc-4.8 /usr/bin/x86_64-linux-gnu-gcc && \
ln -sf gcc-ar-4.8 /usr/bin/x86_64-linux-gnu-gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/x86_64-linux-gnu-gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/x86_64-linux-gnu-gcc-ranlib && \
ln -sf g++-4.8 /usr/bin/g++ && \
ln -sf g++-4.8 /usr/bin/x86_64-linux-gnu-g++
# Install woboq_codebrowser to /woboq # Install woboq_codebrowser to /woboq
RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \ RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \
(cd /woboq \ (cd /woboq \
......
...@@ -129,7 +129,7 @@ if(WITH_GOLANG) ...@@ -129,7 +129,7 @@ if(WITH_GOLANG)
add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/glide add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/glide
COMMAND env GOPATH=${GOPATH} ${GLIDE} install COMMAND env GOPATH=${GOPATH} ${GLIDE} install
COMMAND touch ${CMAKE_BINARY_DIR}/glide COMMAND touch ${CMAKE_BINARY_DIR}/glide
DEPENDS ${PROJ_ROOT}/go/glide.lock DEPENDS ${PADDLE_SOURCE_DIR}/go/glide.lock
WORKING_DIRECTORY "${PADDLE_IN_GOPATH}/go" WORKING_DIRECTORY "${PADDLE_IN_GOPATH}/go"
) )
......
...@@ -52,7 +52,7 @@ macro(add_style_check_target TARGET_NAME) ...@@ -52,7 +52,7 @@ macro(add_style_check_target TARGET_NAME)
if(SOURCES_LIST) if(SOURCES_LIST)
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py" COMMAND "${PYTHON_EXECUTABLE}" "${PADDLE_SOURCE_DIR}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}" "--filter=${STYLE_FILTER}"
${SOURCES_LIST} ${SOURCES_LIST}
COMMENT "cpplint: Checking source code style" COMMENT "cpplint: Checking source code style"
......
...@@ -9,10 +9,12 @@ function(CheckCompilerCXX11Flag) ...@@ -9,10 +9,12 @@ function(CheckCompilerCXX11Flag)
if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8) if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8)
message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.") message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.")
endif() endif()
# TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem. if(NOT ANDROID)
# Use Debug mode instead for now. # TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem.
if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9) # Use Debug mode instead for now.
set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE) if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9)
set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE)
endif()
endif() endif()
elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang") elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
# cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang" # cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang"
......
...@@ -411,7 +411,7 @@ function(py_test TARGET_NAME) ...@@ -411,7 +411,7 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS) set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME} add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR} COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python
python2 ${py_test_SRCS} python2 ${py_test_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif() endif()
......
...@@ -12,7 +12,7 @@ set(CPACK_PACKAGE_DESCRIPTION "") ...@@ -12,7 +12,7 @@ set(CPACK_PACKAGE_DESCRIPTION "")
set(CPACK_DEBIAN_PACKAGE_DEPENDS "libpython2.7-dev, libstdc++6, python-pip, curl, libgfortran3, python-pip-whl") set(CPACK_DEBIAN_PACKAGE_DEPENDS "libpython2.7-dev, libstdc++6, python-pip, curl, libgfortran3, python-pip-whl")
set(CPACK_DEBIAN_PACKAGE_SECTION Devel) set(CPACK_DEBIAN_PACKAGE_SECTION Devel)
set(CPACK_DEBIAN_PACKAGE_VERSION ${PADDLE_VERSION}) set(CPACK_DEBIAN_PACKAGE_VERSION ${PADDLE_VERSION})
set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${PROJ_ROOT}/paddle/scripts/deb/postinst") set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${PADDLE_SOURCE_DIR}/paddle/scripts/deb/postinst")
#set(CPACK_GENERATOR "DEB") #set(CPACK_GENERATOR "DEB")
# Start cpack # Start cpack
include (CMakePackageConfigHelpers) include (CMakePackageConfigHelpers)
......
...@@ -141,8 +141,8 @@ endmacro() ...@@ -141,8 +141,8 @@ endmacro()
function(create_resources res_file output_file) function(create_resources res_file output_file)
add_custom_command( add_custom_command(
OUTPUT ${output_file} OUTPUT ${output_file}
COMMAND python ARGS ${PROJ_ROOT}/cmake/make_resource.py ${res_file} ${output_file} COMMAND python ARGS ${PADDLE_SOURCE_DIR}/cmake/make_resource.py ${res_file} ${output_file}
DEPENDS ${res_file} ${PROJ_ROOT}/cmake/make_resource.py) DEPENDS ${res_file} ${PADDLE_SOURCE_DIR}/cmake/make_resource.py)
endfunction() endfunction()
......
...@@ -4,7 +4,7 @@ set(tmp_version "HEAD") ...@@ -4,7 +4,7 @@ set(tmp_version "HEAD")
while ("${PADDLE_VERSION}" STREQUAL "") while ("${PADDLE_VERSION}" STREQUAL "")
execute_process( execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version} COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
WORKING_DIRECTORY ${PROJ_ROOT} WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_TAG_NAME OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
......
...@@ -257,6 +257,11 @@ seq_concat ...@@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat .. autoclass:: paddle.v2.layer.seq_concat
:noindex: :noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
:noindex:
sub_nested_seq sub_nested_seq
-------------- --------------
.. autoclass:: paddle.v2.layer.sub_nested_seq .. autoclass:: paddle.v2.layer.sub_nested_seq
......
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
...@@ -13,22 +13,18 @@ ...@@ -13,22 +13,18 @@
# serve to show the default. # serve to show the default.
import sys import sys
import os, subprocess import os, subprocess
sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
import shlex import shlex
from recommonmark import parser, transform from recommonmark import parser, transform
try: import paddle
import py_paddle import paddle.v2
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
MarkdownParser = parser.CommonMarkParser MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory, # If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the # add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here. # documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PROJ_ROOT@/doc_theme/templates"] templates_path = ["@PADDLE_SOURCE_DIR@/doc_theme/templates"]
# -- General configuration ------------------------------------------------ # -- General configuration ------------------------------------------------
...@@ -124,7 +120,7 @@ html_theme = 'sphinx_rtd_theme' ...@@ -124,7 +120,7 @@ html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here, # Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files, # relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css". # so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['@PROJ_ROOT@/doc_theme/static'] html_static_path = ['@PADDLE_SOURCE_DIR@/doc_theme/static']
# Output file base name for HTML help builder. # Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc' htmlhelp_basename = project + 'doc'
......
...@@ -13,15 +13,11 @@ ...@@ -13,15 +13,11 @@
# serve to show the default. # serve to show the default.
import sys import sys
import os, subprocess import os, subprocess
sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
import shlex import shlex
from recommonmark import parser, transform from recommonmark import parser, transform
try: import paddle
import py_paddle import paddle.v2
import paddle
import paddle.v2
except ImportError:
print("Must install paddle python package before generating documentation")
sys.exit(1)
MarkdownParser = parser.CommonMarkParser MarkdownParser = parser.CommonMarkParser
...@@ -29,7 +25,7 @@ AutoStructify = transform.AutoStructify ...@@ -29,7 +25,7 @@ AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory, # If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the # add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here. # documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PROJ_ROOT@/doc_theme/templates"] templates_path = ["@PADDLE_SOURCE_DIR@/doc_theme/templates"]
# -- General configuration ------------------------------------------------ # -- General configuration ------------------------------------------------
...@@ -124,7 +120,7 @@ html_theme = 'sphinx_rtd_theme' ...@@ -124,7 +120,7 @@ html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here, # Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files, # relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css". # so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['@PROJ_ROOT@/doc_theme/static'] html_static_path = ['@PADDLE_SOURCE_DIR@/doc_theme/static']
# Output file base name for HTML help builder. # Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc' htmlhelp_basename = project + 'doc'
......
hash: 1b9b07408ca7fac27a374dc2ccd2433e4bff090484008a037df967284949a582 hash: 1b9b07408ca7fac27a374dc2ccd2433e4bff090484008a037df967284949a582
updated: 2017-08-03T21:46:51.744995189Z updated: 2017-08-07T23:37:48.867469328Z
imports: imports:
- name: github.com/beorn7/perks - name: github.com/beorn7/perks
version: 4c0e84591b9aa9e6dcfdf3e020114cd81f89d5f9 version: 4c0e84591b9aa9e6dcfdf3e020114cd81f89d5f9
...@@ -10,7 +10,7 @@ imports: ...@@ -10,7 +10,7 @@ imports:
- name: github.com/cockroachdb/cmux - name: github.com/cockroachdb/cmux
version: 112f0506e7743d64a6eb8fedbcff13d9979bbf92 version: 112f0506e7743d64a6eb8fedbcff13d9979bbf92
- name: github.com/coreos/etcd - name: github.com/coreos/etcd
version: c31bec0f29facff13f7c3e3d948e55dd6689ed42 version: d0d1a87aa96ae14914751d42264262cb69eda170
subpackages: subpackages:
- alarm - alarm
- auth - auth
...@@ -24,6 +24,7 @@ imports: ...@@ -24,6 +24,7 @@ imports:
- error - error
- etcdserver - etcdserver
- etcdserver/api - etcdserver/api
- etcdserver/api/etcdhttp
- etcdserver/api/v2http - etcdserver/api/v2http
- etcdserver/api/v2http/httptypes - etcdserver/api/v2http/httptypes
- etcdserver/api/v3client - etcdserver/api/v3client
...@@ -210,11 +211,6 @@ testImports: ...@@ -210,11 +211,6 @@ testImports:
version: 04cdfd42973bb9c8589fd6a731800cf222fde1a9 version: 04cdfd42973bb9c8589fd6a731800cf222fde1a9
subpackages: subpackages:
- spew - spew
- name: github.com/docker/docker
version: b6d164e6c46d8115b146e4c3ac93784e9ef8b49e
subpackages:
- pkg/ioutils
- pkg/longpath
- name: github.com/pmezard/go-difflib - name: github.com/pmezard/go-difflib
version: d8ed2627bdf02c080bf22230dbb337003b7aba2d version: d8ed2627bdf02c080bf22230dbb337003b7aba2d
subpackages: subpackages:
......
package master_test package master_test
import ( import (
"io/ioutil"
"net/url"
"os" "os"
"strings"
"testing" "testing"
"time" "time"
"github.com/PaddlePaddle/Paddle/go/master" "github.com/PaddlePaddle/Paddle/go/master"
"github.com/coreos/etcd/clientv3" "github.com/coreos/etcd/clientv3"
"github.com/coreos/etcd/embed" "github.com/coreos/etcd/embed"
"github.com/docker/docker/pkg/ioutils"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
) )
func TestNewServiceWithEtcd(t *testing.T) { func TestNewServiceWithEtcd(t *testing.T) {
// setup an embed etcd server // setup an embed etcd server
etcdDir, err := ioutils.TempDir("", "") etcdDir, err := ioutil.TempDir("", "")
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
cfg := embed.NewConfig() cfg := embed.NewConfig()
lpurl, _ := url.Parse("http://localhost:0")
lcurl, _ := url.Parse("http://localhost:0")
cfg.LPUrls = []url.URL{*lpurl}
cfg.LCUrls = []url.URL{*lcurl}
cfg.Dir = etcdDir cfg.Dir = etcdDir
e, err := embed.StartEtcd(cfg) e, err := embed.StartEtcd(cfg)
if err != nil { if err != nil {
...@@ -30,15 +36,13 @@ func TestNewServiceWithEtcd(t *testing.T) { ...@@ -30,15 +36,13 @@ func TestNewServiceWithEtcd(t *testing.T) {
t.Fatal(err) t.Fatal(err)
} }
}() }()
select {
case <-e.Server.ReadyNotify():
t.Log("Server is ready!")
case <-time.After(60 * time.Second):
e.Server.Stop() // trigger a shutdown
t.Fatal("Server took too long to start!")
}
ep := []string{"127.0.0.1:2379"} <-e.Server.ReadyNotify()
port := strings.Split(e.Clients[0].Addr().String(), ":")[1]
endpoint := "127.0.0.1:" + port
ep := []string{endpoint}
masterAddr := "127.0.0.1:3306" masterAddr := "127.0.0.1:3306"
store, err := master.NewEtcdClient(ep, masterAddr, master.DefaultLockPath, master.DefaultAddrPath, master.DefaultStatePath, 30) store, err := master.NewEtcdClient(ep, masterAddr, master.DefaultLockPath, master.DefaultAddrPath, master.DefaultStatePath, 30)
if err != nil { if err != nil {
......
...@@ -90,8 +90,12 @@ func cArrayToSlice(p unsafe.Pointer, len int) []byte { ...@@ -90,8 +90,12 @@ func cArrayToSlice(p unsafe.Pointer, len int) []byte {
type selector bool type selector bool
func (s selector) Select() bool { func (s selector) Select() (bool, error) {
return bool(s) return bool(s), nil
}
func (s selector) Done() error {
return nil
} }
type lister []client.Server type lister []client.Server
...@@ -114,11 +118,10 @@ func paddle_new_pserver_client(addrs *C.char, selected int) C.paddle_pserver_cli ...@@ -114,11 +118,10 @@ func paddle_new_pserver_client(addrs *C.char, selected int) C.paddle_pserver_cli
} }
//export paddle_new_etcd_pserver_client //export paddle_new_etcd_pserver_client
func paddle_new_etcd_pserver_client(etcdEndpoints *C.char, selected int) C.paddle_pserver_client { func paddle_new_etcd_pserver_client(etcdEndpoints *C.char) C.paddle_pserver_client {
// TODO(Longfei: use etcd lock to decide which trainer to initialize the parameters)
addr := C.GoString(etcdEndpoints) addr := C.GoString(etcdEndpoints)
etcdClient := client.NewEtcd(addr) etcdClient := client.NewEtcd(addr)
c := client.NewClient(etcdClient, etcdClient.Desired(), selector(selected != 0)) c := client.NewClient(etcdClient, etcdClient.Desired(), etcdClient)
return add(c) return add(c)
} }
...@@ -136,7 +139,12 @@ func paddle_pserver_client_release(client C.paddle_pserver_client) { ...@@ -136,7 +139,12 @@ func paddle_pserver_client_release(client C.paddle_pserver_client) {
//export paddle_begin_init_params //export paddle_begin_init_params
func paddle_begin_init_params(client C.paddle_pserver_client) C.int { func paddle_begin_init_params(client C.paddle_pserver_client) C.int {
c := get(client) c := get(client)
if selected := c.BeginInitParams(); selected { selected, err := c.BeginInitParams()
if err != nil {
panic(err)
}
if selected {
return 1 return 1
} }
return 0 return 0
......
...@@ -17,12 +17,10 @@ def main(): ...@@ -17,12 +17,10 @@ def main():
# network config # network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, y_predict = paddle.layer.fc(input=x,
param_attr=paddle.attr.Param( param_attr=paddle.attr.Param(name='w'),
name='w', learning_rate=1e-3),
size=1, size=1,
act=paddle.activation.Linear(), act=paddle.activation.Linear(),
bias_attr=paddle.attr.Param( bias_attr=paddle.attr.Param(name='b'))
name='b', learning_rate=1e-3))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.mse_cost(input=y_predict, label=y) cost = paddle.layer.mse_cost(input=y_predict, label=y)
......
...@@ -27,9 +27,13 @@ import ( ...@@ -27,9 +27,13 @@ import (
// TODO(helin): add RPC call retry logic // TODO(helin): add RPC call retry logic
// Selector selects if the client should initialize parameter servers. // Selector selects if the client should initialize parameters and
// reports the initialization process done.
type Selector interface { type Selector interface {
Select() bool // Select selects if the client should initialize parameter servers.
Select() (bool, error)
// Done indicates the initialization process is done.
Done() error
} }
// Server is the identification of a parameter Server. // Server is the identification of a parameter Server.
...@@ -115,7 +119,7 @@ func (c *Client) monitorPservers(l Lister, pserverNum int) { ...@@ -115,7 +119,7 @@ func (c *Client) monitorPservers(l Lister, pserverNum int) {
// servers. Other trainers will be blocked until the initialization is // servers. Other trainers will be blocked until the initialization is
// done, and they need to get the initialized parameters from // done, and they need to get the initialized parameters from
// parameter servers using GetParams. // parameter servers using GetParams.
func (c *Client) BeginInitParams() bool { func (c *Client) BeginInitParams() (bool, error) {
return c.sel.Select() return c.sel.Select()
} }
......
...@@ -124,8 +124,12 @@ func initEtcdClient() { ...@@ -124,8 +124,12 @@ func initEtcdClient() {
type selector bool type selector bool
func (s selector) Select() bool { func (s selector) Select() (bool, error) {
return bool(s) return bool(s), nil
}
func (s selector) Done() error {
return nil
} }
type lister []client.Server type lister []client.Server
...@@ -135,7 +139,11 @@ func (l lister) List() []client.Server { ...@@ -135,7 +139,11 @@ func (l lister) List() []client.Server {
} }
func testClient(t *testing.T, c *client.Client) { func testClient(t *testing.T, c *client.Client) {
selected := c.BeginInitParams() selected, err := c.BeginInitParams()
if err != nil {
t.Fatal(err)
}
if !selected { if !selected {
t.Fatal("should be selected.") t.Fatal("should be selected.")
} }
......
...@@ -16,53 +16,60 @@ package client ...@@ -16,53 +16,60 @@ package client
import ( import (
"context" "context"
"errors"
"fmt"
"strconv" "strconv"
"strings" "strings"
"time" "time"
"github.com/PaddlePaddle/Paddle/go/pserver" "github.com/PaddlePaddle/Paddle/go/pserver"
"github.com/coreos/etcd/clientv3" "github.com/coreos/etcd/clientv3"
"github.com/coreos/etcd/clientv3/concurrency"
log "github.com/sirupsen/logrus" log "github.com/sirupsen/logrus"
) )
const ( const (
defaultEtcdTimeout time.Duration = 5 * time.Second defaultEtcdTimeout time.Duration = 5 * time.Second
initLockPath = "/init_ps/lock"
initDonePath = "/init_ps/done"
initDoneVal = "1"
) )
// EtcdClient is used by pserver client that is a part of trainer process. // Etcd is used by pserver client that is a part of trainer process.
// TODO: // TODO:
// 1. add watcher to watch the change state of pservers) // 1. add watcher to watch the change state of pservers.
// 1. add etcd lock) type Etcd struct {
type EtcdClient struct {
client *clientv3.Client client *clientv3.Client
timeout time.Duration timeout time.Duration
endpoints []string endpoints []string
lock *concurrency.Mutex
} }
// Desired read ps desired number from etcd. // Desired read ps desired number from etcd.
func (p *EtcdClient) Desired() int { func (e *Etcd) Desired() int {
var psDesired int var psDesired int
for { for {
ctx, cancel := context.WithTimeout(context.Background(), p.timeout) ctx, cancel := context.WithTimeout(context.Background(), e.timeout)
resp, err := p.client.Get(ctx, pserver.PsDesired) resp, err := e.client.Get(ctx, pserver.PsDesired)
cancel() cancel()
if err != nil { if err != nil {
log.Errorf("Get ps dresire number failed! recnnectiong..., %v", err) log.Errorf("Get ps dresire number failed! recnnectiong..., %v", err)
time.Sleep(p.timeout) time.Sleep(e.timeout)
continue continue
} }
kvs := resp.Kvs kvs := resp.Kvs
if len(kvs) == 0 { if len(kvs) == 0 {
log.Infoln("Waiting for ps desired registered ...") log.Infoln("Waiting for ps desired registered ...")
time.Sleep(p.timeout) time.Sleep(e.timeout)
continue continue
} }
psDesired, err = strconv.Atoi(string(resp.Kvs[0].Value)) psDesired, err = strconv.Atoi(string(resp.Kvs[0].Value))
if err != nil { if err != nil {
log.Errorf("psDesired %d invalid %v", psDesired, err) log.Errorf("psDesired %d invalid %v", psDesired, err)
time.Sleep(p.timeout) time.Sleep(e.timeout)
continue continue
} }
...@@ -73,26 +80,26 @@ func (p *EtcdClient) Desired() int { ...@@ -73,26 +80,26 @@ func (p *EtcdClient) Desired() int {
} }
// List return the pserver list read from etcd. // List return the pserver list read from etcd.
func (p *EtcdClient) List() []Server { func (e *Etcd) List() []Server {
psDesired := p.Desired() psDesired := e.Desired()
servers := make([]Server, psDesired) servers := make([]Server, psDesired)
for { for {
for i := 0; i < psDesired; i++ { for i := 0; i < psDesired; i++ {
ctx, cancel := context.WithTimeout(context.Background(), p.timeout) ctx, cancel := context.WithTimeout(context.Background(), e.timeout)
psKey := pserver.PsPath + strconv.Itoa(i) psKey := pserver.PsPath + strconv.Itoa(i)
log.Debugf("checking %s", psKey) log.Debugf("checking %s", psKey)
resp, err := p.client.Get(ctx, psKey) resp, err := e.client.Get(ctx, psKey)
cancel() cancel()
if err != nil { if err != nil {
log.Infof("Get psKey= %s error, %v", psKey, err) log.Infof("Get psKey= %s error, %v", psKey, err)
time.Sleep(p.timeout) time.Sleep(e.timeout)
continue continue
} }
kvs := resp.Kvs kvs := resp.Kvs
if len(kvs) == 0 { if len(kvs) == 0 {
log.Infof("Waiting for ps addr registered ...") log.Infof("Waiting for ps addr registered ...")
time.Sleep(p.timeout) time.Sleep(e.timeout)
continue continue
} }
...@@ -100,7 +107,7 @@ func (p *EtcdClient) List() []Server { ...@@ -100,7 +107,7 @@ func (p *EtcdClient) List() []Server {
// TODO(Longfei) check the ps address // TODO(Longfei) check the ps address
if psAddr == "" { if psAddr == "" {
log.Infof("Get psKey = %s, psAddr is empty", psKey) log.Infof("Get psKey = %s, psAddr is empty", psKey)
time.Sleep(p.timeout) time.Sleep(e.timeout)
continue continue
} }
log.Debugf("got value (%s) for key: %s", psAddr, psKey) log.Debugf("got value (%s) for key: %s", psAddr, psKey)
...@@ -113,7 +120,7 @@ func (p *EtcdClient) List() []Server { ...@@ -113,7 +120,7 @@ func (p *EtcdClient) List() []Server {
} }
// NewEtcd create a etcd client to return the state of pserver on etcd. // NewEtcd create a etcd client to return the state of pserver on etcd.
func NewEtcd(endpoints string) *EtcdClient { func NewEtcd(endpoints string) *Etcd {
ep := strings.Split(endpoints, ",") ep := strings.Split(endpoints, ",")
var cli *clientv3.Client var cli *clientv3.Client
var err error var err error
...@@ -130,10 +137,118 @@ func NewEtcd(endpoints string) *EtcdClient { ...@@ -130,10 +137,118 @@ func NewEtcd(endpoints string) *EtcdClient {
break break
} }
log.Infof("Connected to etcd: %s\n", endpoints) log.Infof("Connected to etcd: %s\n", endpoints)
client := &EtcdClient{ client := &Etcd{
client: cli, client: cli,
timeout: defaultEtcdTimeout, timeout: defaultEtcdTimeout,
endpoints: ep, endpoints: ep,
} }
return client return client
} }
// Select indicates if the current trainer is selected to initialize
// the pserver parameters.
func (e *Etcd) Select() (bool, error) {
sess, err := concurrency.NewSession(e.client, concurrency.WithTTL(5))
if err != nil {
return false, err
}
lock := concurrency.NewMutex(sess, initLockPath)
log.Infof("Trying to acquire lock at %s.", initLockPath)
// Do not use timeout context here, since we don't know how
// long does it take for other trainers to initialize the
// parameters.
err = lock.Lock(context.Background())
if err != nil {
return false, err
}
log.Infof("Successfully acquired lock at %s.", initLockPath)
get := clientv3.OpGet(initDonePath)
ctx, cancel := context.WithTimeout(context.Background(), e.timeout)
tresp, err := e.client.Txn(ctx).If(lock.IsOwner()).Then(get).Commit()
cancel()
if err != nil {
return false, err
}
if !tresp.Succeeded {
return false, errors.New("no longer the owner of the lock")
}
resp := tresp.Responses[0].GetResponseRange()
if len(resp.Kvs) == 0 {
// Key value not set, select current trainer.
e.lock = lock
log.Infoln("Trainer selected.")
return true, nil
}
if string(resp.Kvs[0].Value) == initDoneVal {
log.Infoln("Initialization is already done.")
ctx, cancel = context.WithTimeout(context.Background(), e.timeout)
err = lock.Unlock(ctx)
cancel()
if err != nil {
log.Errorln(err)
}
return false, nil
}
return false, fmt.Errorf("key %s have unexpected value: %v", initDonePath, resp.Kvs[0].Value)
}
// Done indicates the parameter initialization process is done.
func (e *Etcd) Done() error {
if e.lock == nil {
return errors.New("lock is nil, Done called unexpectedly")
}
put := clientv3.OpPut(initDonePath, initDoneVal)
ctx, cancel := context.WithTimeout(context.Background(), e.timeout)
tresp, err := e.client.Txn(ctx).If(e.lock.IsOwner()).Then(put).Commit()
cancel()
if err != nil {
return err
}
if !tresp.Succeeded {
return errors.New("no longer the owner of the lock")
}
ctx, cancel = context.WithTimeout(context.Background(), e.timeout)
err = e.lock.Unlock(ctx)
cancel()
if err != nil {
log.Errorln(err)
} else {
e.lock = nil
}
return nil
}
// Close closes the etcd client.
func (e *Etcd) Close() error {
var err error
if e.lock != nil {
ctx, cancel := context.WithTimeout(context.Background(), e.timeout)
err = e.lock.Unlock(ctx)
cancel()
if err == nil {
e.lock = nil
}
}
cErr := e.client.Close()
if cErr != nil {
if err != nil {
log.Errorln(cErr)
return err
}
return cErr
}
return err
}
package client_test
import (
"io/ioutil"
"net/url"
"os"
"strings"
"sync"
"testing"
"github.com/PaddlePaddle/Paddle/go/pserver/client"
"github.com/coreos/etcd/embed"
)
func TestSelector(t *testing.T) {
etcdDir, err := ioutil.TempDir("", "")
if err != nil {
t.Fatal(err)
}
cfg := embed.NewConfig()
lpurl, _ := url.Parse("http://localhost:0")
lcurl, _ := url.Parse("http://localhost:0")
cfg.LPUrls = []url.URL{*lpurl}
cfg.LCUrls = []url.URL{*lcurl}
cfg.Dir = etcdDir
e, err := embed.StartEtcd(cfg)
if err != nil {
t.Fatal(err)
}
defer func() {
e.Close()
if err := os.RemoveAll(etcdDir); err != nil {
t.Fatal(err)
}
}()
<-e.Server.ReadyNotify()
port := strings.Split(e.Clients[0].Addr().String(), ":")[1]
endpoint := "127.0.0.1:" + port
var mu sync.Mutex
selectedCount := 0
var wg sync.WaitGroup
selectAndDone := func(c *client.Etcd) {
defer wg.Done()
selected, err := c.Select()
if err != nil {
panic(err)
}
if selected {
mu.Lock()
selectedCount++
mu.Unlock()
err = c.Done()
if err != nil {
t.Fatal(err)
}
}
}
c0 := client.NewEtcd(endpoint)
c1 := client.NewEtcd(endpoint)
c2 := client.NewEtcd(endpoint)
c3 := client.NewEtcd(endpoint)
wg.Add(3)
go selectAndDone(c0)
go selectAndDone(c1)
go selectAndDone(c2)
wg.Wait()
// simulate trainer crashed and restarted after the
// initialization process.
wg.Add(1)
go selectAndDone(c3)
wg.Wait()
mu.Lock()
if selectedCount != 1 {
t.Fatal("selected count wrong:", selectedCount)
}
mu.Unlock()
err = c0.Close()
if err != nil {
t.Fatal(err)
}
err = c1.Close()
if err != nil {
t.Fatal(err)
}
err = c2.Close()
if err != nil {
t.Fatal(err)
}
err = c3.Close()
if err != nil {
t.Fatal(err)
}
}
...@@ -19,9 +19,9 @@ add_library(paddle_api STATIC ${API_SOURCES}) ...@@ -19,9 +19,9 @@ add_library(paddle_api STATIC ${API_SOURCES})
add_dependencies(paddle_api paddle_proto paddle_trainer_lib) add_dependencies(paddle_api paddle_proto paddle_trainer_lib)
INCLUDE(${SWIG_USE_FILE}) INCLUDE(${SWIG_USE_FILE})
INCLUDE_DIRECTORIES(${PROJ_ROOT}/paddle) INCLUDE_DIRECTORIES(${PADDLE_SOURCE_DIR}/paddle)
FILE(GLOB PY_PADDLE_PYTHON_FILES ${PROJ_ROOT}/paddle/py_paddle/*.py) FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON) SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
...@@ -79,16 +79,16 @@ SWIG_LINK_LIBRARIES(swig_paddle ...@@ -79,16 +79,16 @@ SWIG_LINK_LIBRARIES(swig_paddle
${START_END} ${START_END}
) )
add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PROJ_ROOT}/paddle/py_paddle COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PROJ_ROOT}/paddle/py_paddle COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND ${CMAKE_COMMAND} -E touch .timestamp COMMAND ${CMAKE_COMMAND} -E touch .timestamp
WORKING_DIRECTORY ${PROJ_ROOT}/paddle WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
DEPENDS _swig_paddle DEPENDS _swig_paddle
) )
# TODO(yuyang18) : make wheel name calculated by cmake # TODO(yuyang18) : make wheel name calculated by cmake
add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so) add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so)
if(WITH_TESTING) if(WITH_TESTING)
IF(NOT PY_PIP_FOUND) IF(NOT PY_PIP_FOUND)
......
...@@ -41,7 +41,7 @@ ParameterUpdater *ParameterUpdater::createNewRemoteUpdater( ...@@ -41,7 +41,7 @@ ParameterUpdater *ParameterUpdater::createNewRemoteUpdater(
config->m->getConfig(), pserverSpec, useEtcd)); config->m->getConfig(), pserverSpec, useEtcd));
return updater; return updater;
#else #else
throw UnsupportError(); throw UnsupportError("not compiled with WITH_GOLANG");
#endif #endif
} }
......
...@@ -90,6 +90,18 @@ paddle_error paddle_arguments_set_ids(paddle_arguments args, ...@@ -90,6 +90,18 @@ paddle_error paddle_arguments_set_ids(paddle_arguments args,
return kPD_NO_ERROR; return kPD_NO_ERROR;
} }
paddle_error paddle_arguments_set_frame_shape(paddle_arguments args,
uint64_t ID,
uint64_t frameHeight,
uint64_t frameWidth) {
if (args == nullptr) return kPD_NULLPTR;
auto a = castArg(args);
if (ID >= a->args.size()) return kPD_OUT_OF_RANGE;
a->args[ID].setFrameHeight(frameHeight);
a->args[ID].setFrameWidth(frameWidth);
return kPD_NO_ERROR;
}
paddle_error paddle_arguments_set_sequence_start_pos(paddle_arguments args, paddle_error paddle_arguments_set_sequence_start_pos(paddle_arguments args,
uint64_t ID, uint64_t ID,
uint32_t nestedLevel, uint32_t nestedLevel,
......
...@@ -111,6 +111,20 @@ PD_API paddle_error paddle_arguments_set_ids(paddle_arguments args, ...@@ -111,6 +111,20 @@ PD_API paddle_error paddle_arguments_set_ids(paddle_arguments args,
uint64_t ID, uint64_t ID,
paddle_ivector ids); paddle_ivector ids);
/**
* @brief paddle_arguments_set_frame_shape Set the fram size of one argument
* in array, which index is `ID`.
* @param [in] args arguments array
* @param [in] ID array index
* @param [in] frameHeight maximum height of input images
* @param [in] frameWidth maximum width of input images
* @return paddle_error
*/
PD_API paddle_error paddle_arguments_set_frame_shape(paddle_arguments args,
uint64_t ID,
uint64_t frameHeight,
uint64_t frameWidth);
/** /**
* @brief PDArgsSetSequenceStartPos Set sequence start position vector of one * @brief PDArgsSetSequenceStartPos Set sequence start position vector of one
* argument in array, which index is `ID`. * argument in array, which index is `ID`.
......
...@@ -3,18 +3,21 @@ ...@@ -3,18 +3,21 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#define CHECK(stmt) \ #define CHECK(stmt) \
do { \ do { \
paddle_error __err__ = stmt; \ paddle_error __err__ = stmt; \
if (__err__ != kPD_NO_ERROR) { \ if (__err__ != kPD_NO_ERROR) { \
fprintf(stderr, "Invoke paddle error %d \n" #stmt, __err__); \ fprintf(stderr, "Invoke paddle error %d in " #stmt "\n", __err__); \
exit(__err__); \ exit(__err__); \
} \ } \
} while (0) } while (0)
void* read_config(const char* filename, long* size) { void* read_config(const char* filename, long* size) {
FILE* file = fopen(filename, "r"); FILE* file = fopen(filename, "r");
if (file == NULL) return NULL; if (file == NULL) {
fprintf(stderr, "Open %s error\n", filename);
return NULL;
}
fseek(file, 0L, SEEK_END); fseek(file, 0L, SEEK_END);
*size = ftell(file); *size = ftell(file);
fseek(file, 0L, SEEK_SET); fseek(file, 0L, SEEK_SET);
......
...@@ -54,6 +54,31 @@ paddle_error paddle_gradient_machine_create_for_inference( ...@@ -54,6 +54,31 @@ paddle_error paddle_gradient_machine_create_for_inference(
return kPD_NO_ERROR; return kPD_NO_ERROR;
} }
paddle_error paddle_gradient_machine_create_for_inference_with_parameters(
paddle_gradient_machine* machine, void* mergedModel, uint64_t size) {
if (mergedModel == nullptr) return kPD_NULLPTR;
std::istringstream is(std::string(static_cast<char*>(mergedModel), size));
int64_t modelConfigSize = 0;
is.read((char*)(&modelConfigSize), sizeof(modelConfigSize));
std::string modelConfigProtobuf;
modelConfigProtobuf.resize(modelConfigSize);
is.read(&modelConfigProtobuf[0], modelConfigSize);
paddle::TrainerConfig config;
if (!config.ParseFromString(modelConfigProtobuf) || !config.IsInitialized()) {
return kPD_PROTOBUF_ERROR;
}
auto ptr = new paddle::capi::CGradientMachine();
ptr->machine.reset(paddle::GradientMachine::create(
config.model_config(), CREATE_MODE_TESTING, {paddle::PARAMETER_VALUE}));
std::vector<paddle::ParameterPtr>& parameters = ptr->machine->getParameters();
for (auto& para : parameters) {
para->load(is);
}
*machine = ptr;
return kPD_NO_ERROR;
}
paddle_error paddle_gradient_machine_destroy(paddle_gradient_machine machine) { paddle_error paddle_gradient_machine_destroy(paddle_gradient_machine machine) {
delete cast(machine); delete cast(machine);
return kPD_NO_ERROR; return kPD_NO_ERROR;
......
...@@ -36,6 +36,18 @@ typedef void* paddle_gradient_machine; ...@@ -36,6 +36,18 @@ typedef void* paddle_gradient_machine;
PD_API paddle_error paddle_gradient_machine_create_for_inference( PD_API paddle_error paddle_gradient_machine_create_for_inference(
paddle_gradient_machine* machine, void* modelConfigProtobuf, int size); paddle_gradient_machine* machine, void* modelConfigProtobuf, int size);
/**
* @brief Create a gradient machine used for model inference, using config with
* parameters which is generated by `paddle merge_model`.
* @param [out] machine that used for model inference.
* @param [in] mergedModel
* @param [in] size
* @return paddle_error
*/
PD_API paddle_error
paddle_gradient_machine_create_for_inference_with_parameters(
paddle_gradient_machine* machine, void* mergedModel, uint64_t size);
/** /**
* @brief Load parameter from disk. * @brief Load parameter from disk.
* @param machine Gradient Machine. * @param machine Gradient Machine.
......
...@@ -10,5 +10,5 @@ target_include_directories(capi_test_gradientMachine PUBLIC ...@@ -10,5 +10,5 @@ target_include_directories(capi_test_gradientMachine PUBLIC
${PADDLE_CAPI_INC_PATH}) ${PADDLE_CAPI_INC_PATH})
target_link_libraries(capi_test_gradientMachine paddle_capi) target_link_libraries(capi_test_gradientMachine paddle_capi)
add_test(NAME capi_test_gradientMachine add_test(NAME capi_test_gradientMachine
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/capi/tests) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/capi/tests)
...@@ -7,6 +7,9 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) ...@@ -7,6 +7,9 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context)
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_library(lod_tensor SRCS lod_tensor.cc details/lod_tensor.cc DEPS ddim place tensor)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc) cc_library(scope SRCS scope.cc)
...@@ -32,6 +35,11 @@ py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc. ...@@ -32,6 +35,11 @@ py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.
# Generate an empty __init__.py to make framework_py_proto as a valid python module. # Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto/
COMMENT "Copy generated python proto into directory paddle/v2/framework/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward)
...@@ -40,11 +48,16 @@ if(WITH_PYTHON) ...@@ -40,11 +48,16 @@ if(WITH_PYTHON)
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
SRCS pybind.cc SRCS pybind.cc
DEPS pybind python backward DEPS pybind python backward
fc_op sgd_op
sgd_op add_op
add_op mul_op
mean_op rowwise_add_op
cross_entropy_op sigmoid_op
fill_zeros_like_op softmax_op
recurrent_op) mean_op
cross_entropy_op
recurrent_op
uniform_random_op
gaussian_random_op
fill_zeros_like_op)
endif(WITH_PYTHON) endif(WITH_PYTHON)
...@@ -14,7 +14,6 @@ limitations under the License. */ ...@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once #pragma once
#include <boost/variant.hpp>
#include <functional> #include <functional>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
...@@ -24,6 +23,7 @@ limitations under the License. */ ...@@ -24,6 +23,7 @@ limitations under the License. */
#include "paddle/framework/attribute.pb.h" #include "paddle/framework/attribute.pb.h"
#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/op_desc.pb.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/variant.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
limitations under the License. */ limitations under the License. */
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <list> #include <list>
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
...@@ -132,8 +133,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -132,8 +133,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp); std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
for (std::string& grad_input : grad_op->inputs_) { for (std::string& grad_input : grad_op->inputs_) {
if (no_grad_names.count(grad_input)) { if (no_grad_names.count(grad_input)) {
std::string prefix = // +1 for \0
grad_input.substr(0, grad_input.size() - kGradVarSuffix.size()); std::string prefix = grad_input.substr(
0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
grad_input = prefix + kZeroVarSuffix; grad_input = prefix + kZeroVarSuffix;
// If part of input gradient of that operator is not calculated, fill // If part of input gradient of that operator is not calculated, fill
...@@ -166,7 +168,7 @@ std::shared_ptr<OperatorBase> Backward( ...@@ -166,7 +168,7 @@ std::shared_ptr<OperatorBase> Backward(
std::unordered_set<std::string> no_grad_names; std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size()); no_grad_names.reserve(no_grad_vars.size());
no_grad_names.insert(kEmptyVarName + kGradVarSuffix); no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
for (auto& name : no_grad_vars) { for (auto& name : no_grad_vars) {
no_grad_names.insert(name + kGradVarSuffix); no_grad_names.insert(name + kGradVarSuffix);
......
...@@ -17,16 +17,23 @@ ...@@ -17,16 +17,23 @@
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
using OperatorBase = framework::OperatorBase;
using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker;
using OpProto = framework::OpProto;
using OpAttrChecker = framework::OpAttrChecker;
using Scope = framework::Scope;
using DeviceContext = platform::DeviceContext;
class EmptyOp : public OperatorBase { class EmptyOp : public OperatorBase {
public: public:
DEFINE_OPERATOR_CTOR(EmptyOp, OperatorBase)
void InferShape(const Scope &scope) const override {} void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
const platform::DeviceContext &dev_ctx) const override {}
}; };
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
...@@ -71,7 +78,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { ...@@ -71,7 +78,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
} }
}; };
class FcOp : public ops::NetOp { class FcOp : public operators::NetOp {
public: public:
void Init() override { void Init() override {
AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
...@@ -143,6 +150,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker { ...@@ -143,6 +150,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker {
} // namespace paddle } // namespace paddle
namespace f = paddle::framework; namespace f = paddle::framework;
namespace ops = paddle::operators;
using EnforceNotMet = paddle::platform::EnforceNotMet; using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker); REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker);
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp); REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp);
...@@ -165,10 +173,10 @@ TEST(Backward, simple_op_grad) { ...@@ -165,10 +173,10 @@ TEST(Backward, simple_op_grad) {
ASSERT_EQ(4UL, gop->inputs_.size()); ASSERT_EQ(4UL, gop->inputs_.size());
ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]); ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ("X" + f::kGradVarSuffix, gop->outputs_[0]); ASSERT_EQ(f::GradVarName("X"), gop->outputs_[0]);
ASSERT_EQ("b" + f::kGradVarSuffix, gop->outputs_[1]); ASSERT_EQ(f::GradVarName("b"), gop->outputs_[1]);
ASSERT_EQ("X" + f::kGradVarSuffix, gop->Output("X" + f::kGradVarSuffix)); ASSERT_EQ(f::GradVarName("X"), gop->Output(f::GradVarName("X")));
} }
TEST(Backward, simple_op_not_need_grad) { TEST(Backward, simple_op_not_need_grad) {
...@@ -176,7 +184,7 @@ TEST(Backward, simple_op_not_need_grad) { ...@@ -176,7 +184,7 @@ TEST(Backward, simple_op_not_need_grad) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::Backward(*fwd, {"X"}); auto gop = f::Backward(*fwd, {"X"});
ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(), ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
"X" + f::kGradVarSuffix), f::GradVarName("X")),
gop->outputs_.end()); gop->outputs_.end());
auto no_input_gop = f::Backward(*fwd, {"X", "b"}); auto no_input_gop = f::Backward(*fwd, {"X", "b"});
...@@ -244,18 +252,18 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -244,18 +252,18 @@ TEST(Backward, net_input_of_network_not_need_grad) {
all_output.erase(f::kEmptyVarName); all_output.erase(f::kEmptyVarName);
for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) { for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
ASSERT_NE(all_output.find(out + f::kGradVarSuffix), all_output.end()); ASSERT_NE(all_output.find(f::GradVarName(out)), all_output.end());
} }
// Not Generated X // Not Generated X
ASSERT_EQ(all_output.find("X" + f::kGradVarSuffix), all_output.end()); ASSERT_EQ(all_output.find(f::GradVarName("X")), all_output.end());
ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get()); auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ(f::kEmptyVarName, ASSERT_EQ(f::kEmptyVarName,
first_fc_grad->ops_[2]->Output("A" + f::kGradVarSuffix)); first_fc_grad->ops_[2]->Output(f::GradVarName("A")));
} }
TEST(Backward, net_shared_weight) { TEST(Backward, net_shared_weight) {
...@@ -307,15 +315,15 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -307,15 +315,15 @@ TEST(Backward, op_part_of_output_are_not_need) {
ASSERT_EQ(1UL, fill_zero.inputs_.size()); ASSERT_EQ(1UL, fill_zero.inputs_.size());
ASSERT_EQ("Z", fill_zero.inputs_[0]); ASSERT_EQ("Z", fill_zero.inputs_[0]);
ASSERT_EQ(1UL, fill_zero.outputs_.size()); ASSERT_EQ(1UL, fill_zero.outputs_.size());
ASSERT_EQ("Z" + f::kZeroVarSuffix, fill_zero.outputs_[0]); ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.outputs_[0]);
auto &d_many_out = *net->ops_[1]; auto &d_many_out = *net->ops_[1];
ASSERT_EQ("many_output_op_grad", d_many_out.type_); ASSERT_EQ("many_output_op_grad", d_many_out.type_);
ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG
ASSERT_EQ("Z" + f::kZeroVarSuffix, d_many_out.Input("z" + f::kGradVarSuffix)); ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
ASSERT_EQ("Y" + f::kGradVarSuffix, d_many_out.Input("y" + f::kGradVarSuffix)); d_many_out.Input(f::GradVarName("z")));
ASSERT_EQ("X" + f::kGradVarSuffix, ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
d_many_out.Output("x" + f::kGradVarSuffix)); ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
} }
TEST(Backward, op_part_of_input_are_not_need) { TEST(Backward, op_part_of_input_are_not_need) {
...@@ -325,10 +333,9 @@ TEST(Backward, op_part_of_input_are_not_need) { ...@@ -325,10 +333,9 @@ TEST(Backward, op_part_of_input_are_not_need) {
ASSERT_EQ(grad_mul.type_, "mul_grad"); ASSERT_EQ(grad_mul.type_, "mul_grad");
ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL); ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
ASSERT_EQ(grad_mul.outputs_.size(), 2UL); ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
ASSERT_EQ(grad_mul.Output("A" + f::kGradVarSuffix), f::kEmptyVarName); ASSERT_EQ(grad_mul.Output(f::GradVarName("A")), f::kEmptyVarName);
ASSERT_EQ(grad_mul.Output("B" + f::kGradVarSuffix), "b" + f::kGradVarSuffix); ASSERT_EQ(grad_mul.Output(f::GradVarName("B")), f::GradVarName("b"));
ASSERT_EQ(grad_mul.Input("Out" + f::kGradVarSuffix), ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
"out" + f::kGradVarSuffix);
ASSERT_EQ(grad_mul.Input("A"), "a"); ASSERT_EQ(grad_mul.Input("A"), "a");
ASSERT_EQ(grad_mul.Input("B"), "b"); ASSERT_EQ(grad_mul.Input("B"), "b");
ASSERT_EQ(grad_mul.Input("Out"), "out"); ASSERT_EQ(grad_mul.Input("Out"), "out");
......
...@@ -14,13 +14,12 @@ limitations under the License. */ ...@@ -14,13 +14,12 @@ limitations under the License. */
#pragma once #pragma once
#include <boost/variant.hpp>
#include <initializer_list> #include <initializer_list>
#include <stdexcept> #include <stdexcept>
#include <vector> #include <vector>
#include "paddle/framework/dim.h" #include "paddle/framework/dim.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "unsupported/Eigen/CXX11/Tensor" #include "paddle/platform/variant.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include <memory>
namespace paddle {
namespace framework {
namespace details {
using LOD = LODTensor::LOD;
std::shared_ptr<LOD> SliceLOD(const LOD &lod, size_t level_begin,
size_t level_end) {
auto new_lod = std::make_shared<LOD>();
new_lod->reserve(level_end - level_begin);
for (size_t i = level_begin; i < level_end; i++) {
new_lod->emplace_back(lod[i]);
}
return new_lod;
}
std::shared_ptr<LOD> SliceLOD(const LOD &lod, size_t level, size_t elem_begin,
size_t elem_end, bool tensor_shared) {
// slice the lod.
auto new_lod = std::make_shared<LOD>();
new_lod->reserve(lod.size() - level);
auto start = lod.at(level)[elem_begin];
auto end = lod.at(level)[elem_end];
for (auto it = lod.begin() + level; it != lod.end(); it++) {
auto it_begin = std::find(it->begin(), it->end(), start);
auto it_end = std::find(it_begin, it->end(), end);
PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info");
PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info");
new_lod->emplace_back(it_begin, it_end + 1);
if (!tensor_shared) {
// reset offset if tensor is copyed and sliced.
std::transform(new_lod->back().begin(), new_lod->back().end(),
new_lod->back().begin(),
[start](int v) { return v - start; });
PADDLE_ENFORCE(new_lod->back().front() == 0, "error in slice LOD");
}
}
return new_lod;
}
} // namespace details
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
namespace paddle {
namespace framework {
namespace details {
/*
* Slice levels from LOD.
*
* @lod: LOD to slice.
* @level_begin: level to begin slice.
* @level_end: level to end slice.
*/
std::shared_ptr<LODTensor::LOD> SliceLOD(const LODTensor::LOD &lod,
size_t level_begin, size_t level_end);
/*
* Slice elements from a level of LOD.
*
* @lod: LOD to slice.
* @level: which level to slice.
* @elem_begin: element's index to begin slice.
* @elem_end: element's index to end slice.
*/
std::shared_ptr<LODTensor::LOD> SliceLOD(const LODTensor::LOD &lod,
size_t level, size_t elem_begin,
size_t elem_end, bool tensor_shared);
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -19,45 +19,44 @@ permissions and limitations under the License. */ ...@@ -19,45 +19,44 @@ permissions and limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OpRegistry; typedef std::vector<int> Ints;
using VarIndexMap = std::unordered_map<std::string, int>;
enum class OpArgType { IN, OUT }; enum class OpArgType { IN, OUT };
static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) { const Ints* AttrFormat(const AttributeMap& attrs, const std::string& key) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format"; return (attrs.count(key) > 0) ? &boost::get<Ints>(attrs.at(key)) : nullptr;
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
} }
static const std::vector<int>* GetOpFormat(const OperatorBase* op, Ints* AttrFormat(AttributeMap& attrs, const std::string& key) {
const OpArgType& type) { return (attrs.count(key) > 0) ? &boost::get<Ints>(attrs.at(key)) : nullptr;
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
} }
static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op, static void TransOpArg(const OperatorBase* src_op,
const OpArgType& src_type, const OpArgType& dst_type, std::vector<std::string>& grad_inputs,
std::vector<std::string>& grad_outputs,
AttributeMap& grad_attrs,
std::unordered_map<std::string, int>& grad_idxs,
const std::string& src_type, const std::string& dst_type,
int& idx, bool is_grad) { int& idx, bool is_grad) {
const std::vector<std::string>& src_inout = const std::vector<std::string>& src_inout =
src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; (src_type == "input_format") ? src_op->inputs_ : src_op->outputs_;
const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
const std::vector<int>* src_format = AttrFormat(src_op->Attrs(), src_type);
std::vector<std::string>& dst_inout = std::vector<std::string>& dst_inout =
dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_; (dst_type == "input_format") ? grad_inputs : grad_outputs;
std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
std::vector<int>* dst_format = AttrFormat(grad_attrs, dst_type);
const OpProto& proto = OpRegistry::protos().at(src_op->type_); const OpProto& proto = OpRegistry::protos().at(src_op->type_);
const auto& src_arg_list = const auto& src_arg_list =
src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); (src_type == "input_format") ? proto.inputs() : proto.outputs();
for (const auto& arg : src_arg_list) { for (const auto& arg : src_arg_list) {
std::string src_name = arg.name(); std::string src_name = arg.name();
std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name; std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++; grad_idxs[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name); int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin = int src_begin =
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx); src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
...@@ -76,26 +75,42 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op, ...@@ -76,26 +75,42 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
} }
OperatorBase* BuildGradOp(const OperatorBase* op) { OperatorBase* BuildGradOp(const OperatorBase* op) {
std::string grad_op_type = OpRegistry::grad_ops().at(op->type_); const std::string& grad_op_type = OpRegistry::grad_ops().at(op->Type());
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type; AttributeMap grad_attrs(op->Attrs());
grad_op->attrs_ = op->attrs_; grad_attrs.erase("input_format");
grad_op->attrs_.erase("input_format"); grad_attrs.erase("output_format");
grad_op->attrs_.erase("output_format"); if (op->Attrs().count("input_format") > 0) {
if (GetOpFormat(op, OpArgType::IN) != nullptr) { grad_attrs["output_format"] = std::vector<int>({0});
grad_op->attrs_["output_format"] = std::vector<int>({0});
} }
if (GetOpFormat(op, OpArgType::IN) != nullptr || if (op->Attrs().count("input_format") > 0 ||
GetOpFormat(op, OpArgType::OUT) != nullptr) { op->Attrs().count("output_format") > 0) {
grad_op->attrs_["input_format"] = std::vector<int>({0}); grad_attrs["input_format"] = std::vector<int>({0});
} }
grad_op->in_out_idxs_.reset(new VarIndexMap());
std::vector<std::string> grad_inputs, grad_outputs;
using VarIndexMap = std::unordered_map<std::string, int>;
VarIndexMap* grad_idxs = new VarIndexMap;
int in_idx = 0; int in_idx = 0;
int out_idx = 0; int out_idx = 0;
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G "input_format", "input_format", in_idx, false); // I
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG "output_format", "input_format", in_idx, false); // G
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"output_format", "input_format", in_idx, true); // OG
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"input_format", "output_format", out_idx, true); // IG
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->inputs_ = grad_inputs;
grad_op->outputs_ = grad_outputs;
grad_op->attrs_ = grad_attrs;
grad_op->in_out_idxs_.reset(grad_idxs);
return grad_op; return grad_op;
} }
......
...@@ -10,6 +10,8 @@ namespace framework { ...@@ -10,6 +10,8 @@ namespace framework {
class NOP : public OperatorBase { class NOP : public OperatorBase {
public: public:
DEFINE_OPERATOR_CTOR(NOP, OperatorBase)
void InferShape(const Scope &scope) const override {} void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {} const platform::DeviceContext &dev_ctx) const override {}
...@@ -83,21 +85,19 @@ TEST(GradOpBuilder, MutiInOut) { ...@@ -83,21 +85,19 @@ TEST(GradOpBuilder, MutiInOut) {
EXPECT_EQ(grad_test_op->Input("Out1"), "out1"); EXPECT_EQ(grad_test_op->Input("Out1"), "out1");
EXPECT_EQ(grad_test_op->Inputs("Out2_mult"), EXPECT_EQ(grad_test_op->Inputs("Out2_mult"),
std::vector<std::string>({"out2_1", "out2_2"})); std::vector<std::string>({"out2_1", "out2_2"}));
EXPECT_EQ(grad_test_op->Input("Out1" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out1")),
"out1" + f::kGradVarSuffix); f::GradVarName("out1"));
EXPECT_EQ(grad_test_op->Inputs("Out2_mult" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out2_mult")),
std::vector<std::string>( std::vector<std::string>(
{"out2_1" + f::kGradVarSuffix, "out2_2" + f::kGradVarSuffix})); {f::GradVarName("out2_1"), f::GradVarName("out2_2")}));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1"));
"in1" + f::kGradVarSuffix); EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")),
EXPECT_EQ(grad_test_op->Outputs("In2_mult" + f::kGradVarSuffix), std::vector<std::string>({f::GradVarName("in2_1"),
std::vector<std::string>({"in2_1" + f::kGradVarSuffix, f::GradVarName("in2_2"),
"in2_2" + f::kGradVarSuffix, f::GradVarName("in2_3")}));
"in2_3" + f::kGradVarSuffix})); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In3")), f::GradVarName("in3"));
EXPECT_EQ(grad_test_op->Output("In3" + f::kGradVarSuffix),
"in3" + f::kGradVarSuffix);
} }
TEST(GradOpBuilder, IOIgnoredInGradient) { TEST(GradOpBuilder, IOIgnoredInGradient) {
...@@ -119,19 +119,18 @@ TEST(GradOpBuilder, IOIgnoredInGradient) { ...@@ -119,19 +119,18 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
EXPECT_EQ(grad_test_op->Inputs("Out1_mult"), EXPECT_EQ(grad_test_op->Inputs("Out1_mult"),
std::vector<std::string>({"out1_1", "out1_2"})); std::vector<std::string>({"out1_1", "out1_2"}));
EXPECT_EQ(grad_test_op->Input("Out2"), f::kEmptyVarName); EXPECT_EQ(grad_test_op->Input("Out2"), f::kEmptyVarName);
EXPECT_EQ(grad_test_op->Inputs("Out1_mult" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out1_mult")),
std::vector<std::string>( std::vector<std::string>(
{"out1_1" + f::kGradVarSuffix, "out1_2" + f::kGradVarSuffix})); {f::GradVarName("out1_1"), f::GradVarName("out1_2")}));
EXPECT_EQ(grad_test_op->Input("Out2" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")),
"out2" + f::kGradVarSuffix); f::GradVarName("out2"));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1"));
"in1" + f::kGradVarSuffix); EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")),
EXPECT_EQ(grad_test_op->Outputs("In2_mult" + f::kGradVarSuffix),
std::vector<std::string>( std::vector<std::string>(
{"in2_1" + f::kGradVarSuffix, "in2_2" + f::kGradVarSuffix})); {f::GradVarName("in2_1"), f::GradVarName("in2_2")}));
EXPECT_EQ(grad_test_op->Outputs("In3_mult" + f::kGradVarSuffix), EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In3_mult")),
std::vector<std::string>( std::vector<std::string>(
{"in3_1" + f::kGradVarSuffix, "in3_2" + f::kGradVarSuffix})); {f::GradVarName("in3_1"), f::GradVarName("in3_2")}));
} }
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include <glog/logging.h>
namespace paddle {
namespace framework {
LODTensor LODTensor::SliceShared(size_t level_begin, size_t level_end) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end);
// slice levels just need to update LOD info, each level will contains the
// whole tensor_, so no need to modify tensor_.
return LODTensor(tensor_, new_lod);
}
LODTensor LODTensor::SliceShared(size_t level, size_t elem_begin,
size_t elem_end) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end,
true /*tensor_shared*/);
// slice elements just need to update LOD info, because offsets are not
// changed, so the original tensor_ can be reused.
return LODTensor(tensor_, new_lod);
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#if (!PADDLE_ONLY_CPU)
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#endif
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/enforce.h"
namespace paddle {
namespace framework {
/*
* LODTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
class LODTensor {
public:
// Level save offsets of each unit.
#ifdef PADDLE_ONLY_CPU
using Level = std::vector<size_t>;
#else
using Level = thrust::device_vector<size_t>;
#endif
// LOD stores offsets of each level of units, the largest units level first,
// then the smaller units level. Each Level stores the offsets of units in
// Tesor.
typedef std::vector<Level> LOD;
LODTensor() {}
LODTensor(const std::shared_ptr<Tensor> &tensor,
const std::shared_ptr<LOD> &lod) {
Reset(tensor, lod);
}
void Reset(const std::shared_ptr<Tensor> &tensor,
const std::shared_ptr<LOD> &lod) {
tensor_ = tensor;
lod_start_pos_ = lod;
}
/*
* Get a element from LOD.
*/
size_t lod_element(size_t level, size_t elem) const {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem < NumElements(level),
"element begin [%d] out of range [%d]", elem,
NumElements(level));
return (*lod_start_pos_)[level][elem];
}
/*
* Number of LODTensor's levels, each level has units of data, for example,
* in the sentence's view, article, paragraph, sentence are 3 levels.
*/
size_t NumLevels() const {
return lod_start_pos_ ? lod_start_pos_->size() : 0UL;
}
/*
* Number of elements in a level.
*/
size_t NumElements(size_t level = 0) const {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
// the last offset is the end of last element
return lod_start_pos_->at(level).size() - 1;
}
/*
* Slice of levels[level_begin:level_end], with tensor copied.
*/
template <typename T>
LODTensor SliceCopied(size_t level_begin, size_t level_end,
const platform::Place &dst_place) const;
/*
* Slice of levels[level_begin:level_end], with tensor shared.
*/
LODTensor SliceShared(size_t level_begin, size_t level_end) const;
/*
* Slice of elements of a level, [elem_begin: elem_end], with tensor copied.
* @note: low performance in slice lod_start_pos_.
*/
template <typename T>
LODTensor SliceCopied(size_t level, size_t elem_begin, size_t elem_end,
const platform::Place &dst_place) const;
/*
* Slice of elements of a level, [elem_begin: elem_end], with tensor shared.
* @note: low performance in slice lod_start_pos_.
*/
LODTensor SliceShared(size_t level, size_t elem_begin, size_t elem_end) const;
/*
* Copy other's lod_start_pos_, to share LOD info.
* @note: the LOD info should not be changed.
*/
void ShareLOD(const LODTensor &other) {
lod_start_pos_ = other.lod_start_pos_;
}
/*
* Copy other's lod_start_pos_'s content, free to mutate.
*/
void CopyLOD(const LODTensor &other) {
lod_start_pos_ = std::make_shared<LOD>(*other.lod_start_pos_);
}
/*
* Determine whether LODTensor has a valid LOD info.
*/
bool HasLOD() const { return bool(lod_start_pos_); }
LOD *lod() const { return lod_start_pos_.get(); }
std::shared_ptr<Tensor> &tensor() { return tensor_; }
Tensor *raw_tensor() { return tensor_.get(); }
private:
std::shared_ptr<LOD> lod_start_pos_;
std::shared_ptr<Tensor> tensor_;
};
} // namespace framework
} // namespace paddle
#include "paddle/framework/lod_tensor_impl.h"
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/details/lod_tensor.h"
namespace paddle {
namespace framework {
template <typename T>
LODTensor LODTensor::SliceCopied(size_t level_begin, size_t level_end,
const platform::Place &dst_place) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end);
auto new_tensor = std::make_shared<Tensor>();
new_tensor->CopyFrom<T>(*tensor_, dst_place);
return LODTensor(new_tensor, new_lod);
}
template <typename T>
LODTensor LODTensor::SliceCopied(size_t level, size_t elem_begin,
size_t elem_end,
const platform::Place &dst_place) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end,
false /*tensor_shared*/);
auto start_idx = new_lod->front().front();
auto end_idx = new_lod->front().back() - 1 /*the next element's start*/;
auto sliced_tensor = tensor_->Slice<T>(start_idx, end_idx);
auto new_tensor = std::make_shared<Tensor>();
new_tensor->CopyFrom<T>(sliced_tensor, dst_place);
return LODTensor(new_tensor, new_lod);
}
} // namespace framework
} // namespace paddle
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/framework/lod_tensor.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <memory>
namespace paddle {
namespace framework {
class LODTensorTester : public ::testing::Test {
public:
virtual void SetUp() override {
lod_tensor.reset(new LODTensor);
// tensor's batch_size: 30
// 3 levels
// 0 10 20
// 0 5 10 15 20
// 0 2 5 7 10 12 15 20
auto lod = std::make_shared<LODTensor::LOD>();
lod->push_back(std::vector<size_t>{0, 10, 20});
lod->push_back(std::vector<size_t>{0, 5, 10, 15, 20});
lod->push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
auto tensor = std::make_shared<Tensor>();
tensor->Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory
tensor->mutable_data<float>(place);
lod_tensor->Reset(tensor, lod);
}
protected:
std::unique_ptr<LODTensor> lod_tensor;
platform::CPUPlace place;
};
TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); }
TEST_F(LODTensorTester, NumElements) {
ASSERT_EQ(lod_tensor->NumElements(0), 2UL);
ASSERT_EQ(lod_tensor->NumElements(1), 4UL);
ASSERT_EQ(lod_tensor->NumElements(2), 8UL);
}
TEST_F(LODTensorTester, SliceShared_Level) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
auto new_lod_tensor = lod_tensor->SliceShared(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
auto new_lod_tensor = lod_tensor->SliceShared(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor->NumElements(level + 1));
ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
}
}
TEST_F(LODTensorTester, SliceCopied_Level) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
auto new_lod_tensor =
lod_tensor->SliceCopied<float>(level, level + 1, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
// ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
// TODO(superjom) add tensor comparation here.
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
auto new_lod_tensor =
lod_tensor->SliceCopied<float>(level, level + 2, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor->NumElements(level + 1));
// ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
// TODO(superjom) add tensor comparation here.
}
}
TEST_F(LODTensorTester, SliceShared_Element) {
size_t level = 0;
auto new_lod_tensor = lod_tensor->SliceShared(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
level = 1;
new_lod_tensor = lod_tensor->SliceShared(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
}
TEST_F(LODTensorTester, SliceCopied_Element) {
size_t level = 0;
auto new_lod_tensor = lod_tensor->SliceCopied<float>(level, 0, 2, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
level = 1;
new_lod_tensor = lod_tensor->SliceCopied<float>(level, 0, 2, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
level = 1;
// LOD is
// 0 5 10
// 0 2 5 7 10
new_lod_tensor = lod_tensor->SliceCopied<float>(level, 1, 3, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.lod_element(0, 0), 0UL);
ASSERT_EQ(new_lod_tensor.lod_element(0, 1), 5UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 0), 0UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 1), 2UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 2), 5UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 3), 7UL);
// TODO(superjom) compare the content of these tensors
}
TEST_F(LODTensorTester, ShareLOD) {
LODTensor new_lod_tensor;
new_lod_tensor.ShareLOD(*lod_tensor);
ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod());
}
TEST_F(LODTensorTester, CopyLOD) {
LODTensor new_lod_tensor;
new_lod_tensor.CopyLOD(*lod_tensor);
ASSERT_NE(new_lod_tensor.lod(), lod_tensor->lod());
}
} // namespace framework
} // namespace paddle
...@@ -69,18 +69,18 @@ class OpProtoAndCheckerMaker { ...@@ -69,18 +69,18 @@ class OpProtoAndCheckerMaker {
VariableBuilder AddInput(const std::string& name, VariableBuilder AddInput(const std::string& name,
const std::string& comment) { const std::string& comment) {
auto input = proto_->mutable_inputs()->Add(); VarProto* input = proto_->add_inputs();
*input->mutable_name() = name; input->set_name(name);
*input->mutable_comment() = comment; input->set_comment(comment);
return VariableBuilder{input, [=] { this->SetHasMultipleInput(); }, return VariableBuilder{input, [=] { this->SetHasMultipleInput(); },
nullptr}; nullptr};
} }
VariableBuilder AddOutput(const std::string& name, VariableBuilder AddOutput(const std::string& name,
const std::string& comment) { const std::string& comment) {
auto output = proto_->mutable_outputs()->Add(); VarProto* output = proto_->add_outputs();
*output->mutable_name() = name; output->set_name(name);
*output->mutable_comment() = comment; output->set_comment(comment);
return VariableBuilder{output, [=] { this->SetHasMultipleOutput(); }, return VariableBuilder{output, [=] { this->SetHasMultipleOutput(); },
[=] { this->SetHasTemporaryOutput(); }}; [=] { this->SetHasTemporaryOutput(); }};
} }
...@@ -89,17 +89,15 @@ class OpProtoAndCheckerMaker { ...@@ -89,17 +89,15 @@ class OpProtoAndCheckerMaker {
TypedAttrChecker<T>& AddAttr(const std::string& name, TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment, const std::string& comment,
bool generated = false) { bool generated = false) {
auto attr = proto_->mutable_attrs()->Add(); AttrProto* attr = proto_->add_attrs();
*attr->mutable_name() = name; attr->set_name(name);
*attr->mutable_comment() = comment; attr->set_comment(comment);
attr->set_generated(generated); attr->set_generated(generated);
attr->set_type(AttrTypeID<T>()); attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name); return op_checker_->AddAttrChecker<T>(name);
} }
void AddComment(const std::string& comment) { void AddComment(const std::string& comment) { proto_->set_comment(comment); }
*(proto_->mutable_comment()) = comment;
}
private: private:
void SetHasMultiple(const std::string& in_out, bool* flag) { void SetHasMultiple(const std::string& in_out, bool* flag) {
...@@ -187,7 +185,7 @@ class OpRegistry { ...@@ -187,7 +185,7 @@ class OpRegistry {
OpProto& op_proto = protos()[op_type]; OpProto& op_proto = protos()[op_type];
auto maker = ProtoMakerType(&op_proto, &op_checker); auto maker = ProtoMakerType(&op_proto, &op_checker);
maker.Validate(); maker.Validate();
*op_proto.mutable_type() = op_type; op_proto.set_type(op_type);
PADDLE_ENFORCE( PADDLE_ENFORCE(
op_proto.IsInitialized(), op_proto.IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized", "Fail to initialize %s's OpProto, because %s is not initialized",
...@@ -260,12 +258,6 @@ class OpRegistry { ...@@ -260,12 +258,6 @@ class OpRegistry {
return CreateOp(op_desc.type(), inputs, outputs, attrs); return CreateOp(op_desc.type(), inputs, outputs, attrs);
} }
static bool SupportGPU(const std::string& op_type) {
OperatorWithKernel::OpKernelKey key;
key.place_ = platform::GPUPlace();
return OperatorWithKernel::AllOpKernels().at(op_type).count(key) != 0;
}
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) { static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops"); "Use framework::Backward to get backward ops");
...@@ -313,22 +305,45 @@ class OpRegistry { ...@@ -313,22 +305,45 @@ class OpRegistry {
} }
}; };
class Registrar {
public:
// In our design, various kinds of classes, e.g., operators and kernels, have
// their corresponding registry and registrar. The action of registration is
// in the constructor of a global registrar variable, which, however, are not
// used in the code that calls package framework, and would be removed from
// the generated binary file by the linker. To avoid such removal, we add
// Touch to all registrar classes and make USE_OP macros to call this
// method. So, as long as the callee code calls USE_OP, the global
// registrar variable won't be removed by the linker.
void Touch() {}
};
template <typename OpType, typename ProtoMakerType> template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper { class OpRegistrar : public Registrar {
public: public:
explicit OpRegisterHelper(const char* op_type) { explicit OpRegistrar(const char* op_type) {
OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type); OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
} }
}; };
template <typename GradOpType> template <typename GradOpType>
class GradOpRegisterHelper { class GradOpRegistrar : public Registrar {
public: public:
GradOpRegisterHelper(const char* op_type, const char* grad_op_type) { GradOpRegistrar(const char* op_type, const char* grad_op_type) {
OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type); OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type);
} }
}; };
template <typename PlaceType, typename KernelType>
class OpKernelRegistrar : public Registrar {
public:
explicit OpKernelRegistrar(const char* op_type) {
OperatorWithKernel::OpKernelKey key;
key.place_ = PlaceType();
OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KernelType);
}
};
/** /**
* check if MACRO is used in GLOBAL NAMESPACE. * check if MACRO is used in GLOBAL NAMESPACE.
*/ */
...@@ -339,97 +354,121 @@ class GradOpRegisterHelper { ...@@ -339,97 +354,121 @@ class GradOpRegisterHelper {
msg) msg)
/** /**
* Macro to Register Operator. * Macro to register Operator.
*/ */
#define REGISTER_OP(__op_type, __op_class, __op_maker_class) \ #define REGISTER_OP(op_type, op_class, op_maker_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
"REGISTER_OP must be in global namespace"); \ __reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \ static ::paddle::framework::OpRegistrar<op_class, op_maker_class> \
__op_register_##__op_type##__(#__op_type); \ __op_registrar_##op_type##__(#op_type); \
int __op_register_##__op_type##_handle__() { return 0; } int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
return 0; \
}
/** /**
* Macro to Register Gradient Operator. * Macro to register Gradient Operator.
*/ */
#define REGISTER_GRADIENT_OP(__op_type, __grad_op_type, __grad_op_class) \ #define REGISTER_GRADIENT_OP(op_type, grad_op_type, grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##__op_type##__grad_op_type, \ __reg_gradient_op__##op_type##_##grad_op_type, \
"REGISTER_GRADIENT_OP must be in global namespace"); \ "REGISTER_GRADIENT_OP must be called in global namespace"); \
static ::paddle::framework::GradOpRegisterHelper<__grad_op_class> \ static ::paddle::framework::GradOpRegistrar<grad_op_class> \
__op_gradient_register_##__op_type##__grad_op_type##__(#__op_type, \ __op_gradient_registrar_##op_type##_##grad_op_type##__(#op_type, \
#__grad_op_type); \ #grad_op_type); \
int __op_gradient_register_##__op_type##__grad_op_type##_handle__() { \ int TouchOpGradientRegistrar_##op_type() { \
return 0; \ __op_gradient_registrar_##op_type##_##grad_op_type##__.Touch(); \
return 0; \
} }
/** /**
* Macro to Forbid user register Gradient Operator. * Macro to register OperatorKernel.
*/ */
#define NO_GRADIENT(__op_type) \ #define REGISTER_OP_KERNEL(op_type, DEVICE_TYPE, place_class, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##__op_type##__op_type##_grad, \ __reg_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"NO_GRADIENT must be in global namespace") "REGISTER_OP_KERNEL must be called in global namespace"); \
static ::paddle::framework::OpKernelRegistrar<place_class, __VA_ARGS__> \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__(#op_type); \
int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() { \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__.Touch(); \
return 0; \
}
/** /**
* Macro to Register OperatorKernel. * Macro to Forbid user register Gradient Operator.
*/ */
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...) \ #define NO_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##type##_##DEVICE_TYPE##__, \ __reg_gradient_op__##op_type##_##op_type##_grad, \
"REGISTER_OP_KERNEL must be in global namespace"); \ "NO_GRADIENT must be called in global namespace")
struct __op_kernel_register__##type##__##DEVICE_TYPE##__ { \
__op_kernel_register__##type##__##DEVICE_TYPE##__() { \ #define REGISTER_OP_GPU_KERNEL(op_type, ...) \
::paddle::framework::OperatorWithKernel::OpKernelKey key; \ REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
key.place_ = PlaceType(); \
::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \ #define REGISTER_OP_CPU_KERNEL(op_type, ...) \
.reset(new __VA_ARGS__()); \ REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
} \
}; \
static __op_kernel_register__##type##__##DEVICE_TYPE##__ \
__reg_kernel_##type##__##DEVICE_TYPE##__; \
int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
/** /**
* Macro to mark what Operator and Kernel we will use and tell the compiler to * Macro to mark what Operator and Kernel we will use and tell the compiler to
* link them into target. * link them into target.
*/ */
#define USE_OP_WITHOUT_KERNEL(op_type) \ #define USE_OP_ITSELF(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_without_kernel_##op_type, \ __use_op_itself_##op_type, \
"USE_OP_WITHOUT_KERNEL must be in global namespace"); \ "USE_OP_ITSELF must be called in global namespace"); \
extern int __op_register_##op_type##_handle__(); \ extern int TouchOpRegistrar_##op_type(); \
static int __use_op_ptr_##op_type##_without_kernel__ \ static int use_op_itself_##op_type##_ __attribute__((unused)) = \
__attribute__((unused)) = __op_register_##op_type##_handle__() TouchOpRegistrar_##op_type()
#define USE_OP_KERNEL(op_type, DEVICE_TYPE) \ // TODO(fengjiayi): Most ops' gradient op have not been compeleted. So we use
STATIC_ASSERT_GLOBAL_NAMESPACE( \ // `NO_GRAD` to disable micro USE_OP_GRADIENT(op_type). Otherwise the code can't
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \ // be compiled. `NO_GRAD` should be removed after all gradient ops are
"USE_OP_KERNEL must be in global namespace"); \ // compeleted.
extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \ #define NO_GRAD
static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__ \ #ifndef NO_GRAD
__attribute__((unused)) = \ #define USE_OP_GRADIENT(op_type) \
__op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__() STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_gradient_##op_type, \
// use Operator with only cpu kernel. "USE_OP_GRADIENT must be called in global namespace"); \
#define USE_OP_CPU(op_type) \ extern int TouchOpGradientRegistrar_##op_type(); \
USE_OP_WITHOUT_KERNEL(op_type); \ static int use_op_gradient_##op_type##_ __attribute__((unused)) = \
USE_OP_KERNEL(op_type, CPU) TouchOpGradientRegistrar_##op_type()
#else
#define USE_OP_GRADIENT(op_type)
#endif
#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"USE_OP_DEVICE_KERNEL must be in global namespace"); \
extern int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE(); \
static int use_op_kernel_##op_type##_##DEVICE_TYPE##_ \
__attribute__((unused)) = \
TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE()
// TODO(fengjiayi): The following macros seems ugly, do we have better method?
#ifdef PADDLE_ONLY_CPU #ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type) #define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
#else #else
#define USE_OP(op_type) \ #define USE_OP_KERNEL(op_type) \
USE_OP_CPU(op_type); \ USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_KERNEL(op_type, GPU) USE_OP_DEVICE_KERNEL(op_type, GPU)
#endif #endif
#define USE_NO_GRAD_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)
#define USE_CPU_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_GRADIENT(op_type)
#define USE_OP(op_type) \
USE_NO_GRAD_OP(op_type); \
USE_OP_GRADIENT(op_type)
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -7,6 +7,8 @@ namespace paddle { ...@@ -7,6 +7,8 @@ namespace paddle {
namespace framework { namespace framework {
class CosineOp : public OperatorBase { class CosineOp : public OperatorBase {
public: public:
DEFINE_OPERATOR_CTOR(CosineOp, OperatorBase)
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
...@@ -27,6 +29,8 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -27,6 +29,8 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class MyTestOp : public OperatorBase { class MyTestOp : public OperatorBase {
public: public:
DEFINE_OPERATOR_CTOR(MyTestOp, OperatorBase)
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
......
...@@ -15,7 +15,6 @@ limitations under the License. */ ...@@ -15,7 +15,6 @@ limitations under the License. */
#pragma once #pragma once
#include <algorithm> #include <algorithm>
#include <boost/variant.hpp>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
...@@ -27,25 +26,26 @@ limitations under the License. */ ...@@ -27,25 +26,26 @@ limitations under the License. */
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/platform/variant.h"
#include "paddle/utils/Error.h" #include "paddle/utils/Error.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
/// If a variable is a empty variable, that name will be used. /// If a variable is a empty variable, that name will be used.
const std::string kEmptyVarName = "@EMPTY@"; constexpr char kEmptyVarName[] = "@EMPTY@";
/// If a variable is a temporary variable, that name will be set in Python, /// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator. /// but it will be convert to a unique name in scope after OpCreator.
const std::string kTempVarName = "@TEMP@"; constexpr char kTempVarName[] = "@TEMP@";
/// If a variable's name has a certain suffix, it means that the /// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale. /// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x". /// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const std::string kGradVarSuffix = "@GRAD"; constexpr char kGradVarSuffix[] = "@GRAD";
/// Variables with this suffix are supposed to be filled up with zeros. /// Variables with this suffix are supposed to be filled up with zeros.
const std::string kZeroVarSuffix = "@ZERO"; constexpr char kZeroVarSuffix[] = "@ZERO";
inline std::string GradVarName(const std::string& var_name) { inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix; return var_name + kGradVarSuffix;
...@@ -63,6 +63,17 @@ class ExecutionContext; ...@@ -63,6 +63,17 @@ class ExecutionContext;
*/ */
class OperatorBase { class OperatorBase {
public: public:
OperatorBase() {} // TODO(yi): This constructor is to be removed.
OperatorBase(const std::string& type, const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs,
const AttributeMap& attrs,
std::unordered_map<std::string, int>* in_out_idxs)
: type_(type),
inputs_(inputs),
outputs_(outputs),
attrs_(attrs),
in_out_idxs_(in_out_idxs) {}
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
template <typename T> template <typename T>
...@@ -88,21 +99,31 @@ class OperatorBase { ...@@ -88,21 +99,31 @@ class OperatorBase {
virtual bool IsNetOp() const { return false; } virtual bool IsNetOp() const { return false; }
virtual bool SupportGPU() const { return false; }
/// rename inputs outputs name /// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name); void Rename(const std::string& old_name, const std::string& new_name);
//! Get a input with argument's name described in `op_proto` //! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const; const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables. //! Get a input which has multiple variables.
//! TODO add a vector_view to prevent memory copy. //! TODO add a vector_view to prevent memory copy.
std::vector<std::string> Inputs(const std::string& name) const; std::vector<std::string> Inputs(const std::string& name) const;
//! Get a output with argument's name described in `op_proto` //! Get a output with argument's name described in `op_proto`
const std::string& Output(const std::string& name) const; const std::string& Output(const std::string& name) const;
//! Get an output which has multiple variables. //! Get an output which has multiple variables.
//! TODO add a vector_view to prevent memory copy. //! TODO add a vector_view to prevent memory copy.
std::vector<std::string> Outputs(const std::string& name) const; std::vector<std::string> Outputs(const std::string& name) const;
const std::string Type() const { return type_; }
const std::vector<std::string> Inputs() const { return inputs_; }
const std::vector<std::string> Outputs() const { return outputs_; }
const AttributeMap& Attrs() const { return attrs_; }
const std::unordered_map<std::string, int>* InOutIdx() const {
return in_out_idxs_.get();
}
public: public:
std::string type_; std::string type_;
// NOTE: in case of OpGrad, inputs_ contains: // NOTE: in case of OpGrad, inputs_ contains:
...@@ -118,10 +139,10 @@ class OperatorBase { ...@@ -118,10 +139,10 @@ class OperatorBase {
std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_; std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
}; };
class OperatorContext { class InferShapeContext {
public: public:
OperatorContext(const OperatorBase* op, const Scope& scope) InferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(*op), scope_(scope) {} : op_(op), scope_(scope) {}
size_t InputSize() const { return op_.inputs_.size(); } size_t InputSize() const { return op_.inputs_.size(); }
...@@ -232,12 +253,6 @@ class OperatorContext { ...@@ -232,12 +253,6 @@ class OperatorContext {
const Scope& scope_; const Scope& scope_;
}; };
class InferShapeContext : public OperatorContext {
public:
InferShapeContext(const OperatorBase* op, const Scope& scope)
: OperatorContext(op, scope) {}
};
template <typename T> template <typename T>
struct EigenDeviceConverter; struct EigenDeviceConverter;
...@@ -253,11 +268,11 @@ struct EigenDeviceConverter<platform::GPUPlace> { ...@@ -253,11 +268,11 @@ struct EigenDeviceConverter<platform::GPUPlace> {
}; };
#endif #endif
class ExecutionContext : public OperatorContext { class ExecutionContext : public InferShapeContext {
public: public:
ExecutionContext(const OperatorBase* op, const Scope& scope, ExecutionContext(const OperatorBase& op, const Scope& scope,
const platform::DeviceContext* device_context) const platform::DeviceContext* device_context)
: OperatorContext(op, scope), device_context_(device_context) {} : InferShapeContext(op, scope), device_context_(device_context) {}
template <typename PlaceType, template <typename PlaceType,
typename DeviceType = typename DeviceType =
...@@ -285,6 +300,14 @@ class OpKernel { ...@@ -285,6 +300,14 @@ class OpKernel {
class OperatorWithKernel : public OperatorBase { class OperatorWithKernel : public OperatorBase {
public: public:
OperatorWithKernel() {} // TODO(yi): This constructor is to be removed.
OperatorWithKernel(const std::string& type,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs,
const AttributeMap& attrs,
std::unordered_map<std::string, int>* in_out_idxs)
: OperatorBase(type, inputs, outputs, attrs, in_out_idxs) {}
struct OpKernelKey { struct OpKernelKey {
platform::Place place_; platform::Place place_;
...@@ -308,14 +331,14 @@ class OperatorWithKernel : public OperatorBase { ...@@ -308,14 +331,14 @@ class OperatorWithKernel : public OperatorBase {
using OpKernelMap = using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>; std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
void InferShape(const Scope& scope) const { void InferShape(const Scope& scope) const override {
InferShape(InferShapeContext(this, scope)); InferShape(InferShapeContext(*this, scope));
} }
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const final { const platform::DeviceContext& dev_ctx) const final {
auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx)); auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
opKernel->Compute(ExecutionContext(this, scope, &dev_ctx)); opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
} }
static std::unordered_map<std::string /* op_type */, OpKernelMap>& static std::unordered_map<std::string /* op_type */, OpKernelMap>&
...@@ -324,9 +347,25 @@ class OperatorWithKernel : public OperatorBase { ...@@ -324,9 +347,25 @@ class OperatorWithKernel : public OperatorBase {
return g_all_op_kernels; return g_all_op_kernels;
} }
bool SupportGPU() const override {
OperatorWithKernel::OpKernelKey key;
key.place_ = platform::GPUPlace();
return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
}
protected: protected:
virtual void InferShape(const InferShapeContext& ctx) const = 0; virtual void InferShape(const InferShapeContext& ctx) const = 0;
}; };
#define DEFINE_OPERATOR_CTOR(Class, ParentClass) \
public: \
Class() { /* TODO(yi): This constructor is to be removed. */ \
} \
Class(const std::string& type, const std::vector<std::string>& inputs, \
const std::vector<std::string>& outputs, \
const ::paddle::framework::AttributeMap& attrs, \
std::unordered_map<std::string, int>* in_out_idxs) \
: ParentClass(type, inputs, outputs, attrs, in_out_idxs) {}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -23,6 +23,8 @@ static int op_run_num = 0; ...@@ -23,6 +23,8 @@ static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase { class OpWithoutKernelTest : public OperatorBase {
public: public:
DEFINE_OPERATOR_CTOR(OpWithoutKernelTest, OperatorBase)
void Init() override { x = 1; } void Init() override { x = 1; }
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
...@@ -97,6 +99,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -97,6 +99,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
static int cpu_kernel_run_num = 0; static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel { class OpWithKernelTest : public OperatorWithKernel {
public:
DEFINE_OPERATOR_CTOR(OpWithKernelTest, OperatorWithKernel)
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override {} void InferShape(const framework::InferShapeContext& ctx) const override {}
}; };
...@@ -116,6 +120,8 @@ class CPUKernelTest : public OpKernel { ...@@ -116,6 +120,8 @@ class CPUKernelTest : public OpKernel {
// multiple inputs test // multiple inputs test
class OperatorMultiInputsTest : public OperatorBase { class OperatorMultiInputsTest : public OperatorBase {
public: public:
DEFINE_OPERATOR_CTOR(OperatorMultiInputsTest, OperatorBase)
void Init() override { x = 1; } void Init() override { x = 1; }
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
......
...@@ -18,13 +18,11 @@ limitations under the License. */ ...@@ -18,13 +18,11 @@ limitations under the License. */
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor_py.h" #include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/string/to_string.h"
#include "pybind11/numpy.h" #include "pybind11/numpy.h"
#include "pybind11/pybind11.h" #include "pybind11/pybind11.h"
#include "pybind11/stl.h" #include "pybind11/stl.h"
...@@ -32,18 +30,23 @@ limitations under the License. */ ...@@ -32,18 +30,23 @@ limitations under the License. */
namespace py = pybind11; namespace py = pybind11;
USE_OP(add_two); USE_OP(add_two);
USE_OP_CPU(onehot_cross_entropy); USE_CPU_OP(onehot_cross_entropy);
USE_OP_WITHOUT_KERNEL(fc); USE_NO_GRAD_OP(sgd);
USE_OP(sgd);
USE_OP(mul); USE_OP(mul);
USE_OP(mean); USE_OP(mean);
USE_OP(sigmoid); USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
USE_OP(rowwise_add); USE_OP(rowwise_add);
USE_OP(fill_zeros_like); USE_OP(fill_zeros_like);
USE_OP_WITHOUT_KERNEL(recurrent_op); USE_OP_ITSELF(recurrent_op);
USE_OP(gaussian_random);
USE_OP(uniform_random);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
using Tensor = framework::Tensor;
template <typename ClassType> template <typename ClassType>
void ExposeOperator(ClassType &m) { void ExposeOperator(ClassType &m) {
m.def("infer_shape", &ClassType::type::InferShape) m.def("infer_shape", &ClassType::type::InferShape)
...@@ -56,6 +59,26 @@ void ExposeOperator(ClassType &m) { ...@@ -56,6 +59,26 @@ void ExposeOperator(ClassType &m) {
[](const typename ClassType::type &op) -> std::vector<std::string> { [](const typename ClassType::type &op) -> std::vector<std::string> {
return op.outputs_; return op.outputs_;
}) })
.def("inputs",
[](const typename ClassType::type &op) -> std::vector<std::string> {
return op.inputs_;
})
.def("support_gpu", &ClassType::type::SupportGPU)
.def("temp_outputs",
[](const typename ClassType::type &op) -> std::vector<std::string> {
auto iter = op.attrs_.find("temporary_index");
std::vector<std::string> ret;
if (iter == op.attrs_.end()) {
return ret;
} else {
auto tmp_idx = boost::get<std::vector<int>>(iter->second);
ret.reserve(tmp_idx.size());
for (auto &index : tmp_idx) {
ret.push_back(op.outputs_.at(index));
}
return ret;
}
})
.def("__str__", &ClassType::type::DebugString); .def("__str__", &ClassType::type::DebugString);
} }
...@@ -129,8 +152,8 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -129,8 +152,8 @@ All parameter, weight, gradient are variables in Paddle.
[](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); }, [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("get_net", .def("get_net",
[](Variable &self) -> ops::NetOp * { [](Variable &self) -> operators::NetOp * {
return self.GetMutable<ops::NetOp>(); return self.GetMutable<operators::NetOp>();
}, },
py::return_value_policy::reference); py::return_value_policy::reference);
...@@ -184,9 +207,13 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -184,9 +207,13 @@ All parameter, weight, gradient are variables in Paddle.
}); });
// clang-format on // clang-format on
py::class_<paddle::platform::GPUPlace>(m, "GPUPlace").def(py::init<int>()); py::class_<platform::GPUPlace>(m, "GPUPlace")
.def(py::init<int>())
.def("__str__", string::to_string<const platform::GPUPlace &>);
py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>()); py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
.def(py::init<>())
.def("__str__", string::to_string<const platform::CPUPlace &>);
py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base( py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
m, "Operator"); m, "Operator");
...@@ -201,8 +228,6 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -201,8 +228,6 @@ All parameter, weight, gradient are variables in Paddle.
return OpRegistry::CreateOp(desc); return OpRegistry::CreateOp(desc);
}); });
operator_base.def_static("support_gpu", &OpRegistry::SupportGPU);
operator_base.def("backward", operator_base.def("backward",
[](const OperatorBase &forwardOp, [](const OperatorBase &forwardOp,
const std::unordered_set<std::string> &no_grad_vars) { const std::unordered_set<std::string> &no_grad_vars) {
...@@ -211,23 +236,24 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -211,23 +236,24 @@ All parameter, weight, gradient are variables in Paddle.
ExposeOperator(operator_base); ExposeOperator(operator_base);
py::class_<ops::NetOp, std::shared_ptr<ops::NetOp>> net(m, "Net"); py::class_<operators::NetOp, std::shared_ptr<operators::NetOp>> net(m, "Net");
net.def_static("create", net.def_static("create",
[]() -> std::shared_ptr<ops::NetOp> { []() -> std::shared_ptr<operators::NetOp> {
auto retv = std::make_shared<ops::NetOp>(); auto retv = std::make_shared<operators::NetOp>();
retv->type_ = "plain_net"; retv->type_ = "plain_net";
return retv; return retv;
}) })
.def("add_op", &ops::NetOp::AddOp) .def("add_op", &operators::NetOp::AddOp)
.def( .def("add_op",
"add_op", [](operators::NetOp &self,
[](ops::NetOp &self, const std::shared_ptr<ops::NetOp> &net) -> void { const std::shared_ptr<operators::NetOp> &net) -> void {
self.AddOp(std::static_pointer_cast<OperatorBase>(net)); self.AddOp(std::static_pointer_cast<OperatorBase>(net));
}) })
.def("complete_add_op", &ops::NetOp::CompleteAddOp) .def("complete_add_op", &operators::NetOp::CompleteAddOp)
.def("complete_add_op", .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
[](std::shared_ptr<ops::NetOp> &self) { self->CompleteAddOp(); }); self->CompleteAddOp();
});
ExposeOperator(net); ExposeOperator(net);
......
...@@ -18,6 +18,8 @@ limitations under the License. */ ...@@ -18,6 +18,8 @@ limitations under the License. */
#include <cstring> #include <cstring>
#include <memory> #include <memory>
#include <typeindex> #include <typeindex>
#include <vector>
#include "paddle/framework/ddim.h" #include "paddle/framework/ddim.h"
#include "paddle/memory/memory.h" #include "paddle/memory/memory.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
...@@ -77,11 +79,11 @@ class Tensor { ...@@ -77,11 +79,11 @@ class Tensor {
inline const DDim& dims() const; inline const DDim& dims() const;
/*! Resize the dimensions of the memory block. */ /*! Resize the dimensions of the memory block. */
inline void Resize(const DDim& dims); inline Tensor& Resize(const DDim& dims);
/*! The internal of two tensors share the same memory block. */ /*! The internal of two tensors share the same memory block. */
template <typename T> template <typename T>
inline void ShareDataWith(const Tensor& src); inline Tensor& ShareDataWith(const Tensor& src);
/** /**
* @brief Copy the content of external tensor to a new place. * @brief Copy the content of external tensor to a new place.
......
...@@ -23,9 +23,11 @@ template <typename T> ...@@ -23,9 +23,11 @@ template <typename T>
inline void Tensor::check_memory_size() const { inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
holder_, "Tenosr holds no memory. Call Tensor::mutable_data first."); holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE(holder_->size(), product(dims_) * sizeof(T) + offset_, PADDLE_ENFORCE_GE(
"Tensor's dims_ is out of bound. Call Tensor::mutable_data " holder_->size(), product(dims_) * sizeof(T) + offset_,
"first to re-allocate memory."); "Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory.\n"
"or maybe the required data-type mismatches the data already stored.");
} }
template <typename T> template <typename T>
...@@ -78,9 +80,10 @@ inline T* Tensor::mutable_data(platform::Place place) { ...@@ -78,9 +80,10 @@ inline T* Tensor::mutable_data(platform::Place place) {
} }
template <typename T> template <typename T>
inline void Tensor::ShareDataWith(const Tensor& src) { inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
src.check_memory_size<T>(); src.check_memory_size<T>();
*this = src; *this = src;
return *this;
} }
template <typename T> template <typename T>
...@@ -136,7 +139,10 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { ...@@ -136,7 +139,10 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
return dst; return dst;
} }
inline void Tensor::Resize(const DDim& dims) { dims_ = dims; } inline Tensor& Tensor::Resize(const DDim& dims) {
dims_ = dims;
return *this;
}
inline const DDim& Tensor::dims() const { return dims_; } inline const DDim& Tensor::dims() const { return dims_; }
......
...@@ -19,7 +19,7 @@ TEST(Tensor, Dims) { ...@@ -19,7 +19,7 @@ TEST(Tensor, Dims) {
using namespace paddle::framework; using namespace paddle::framework;
using namespace paddle::platform; using namespace paddle::platform;
Tensor tt; Tensor tt;
tt.Resize(make_ddim({2, 3, 4})); tt.Resize({2, 3, 4});
DDim dims = tt.dims(); DDim dims = tt.dims();
ASSERT_EQ(arity(dims), 3); ASSERT_EQ(arity(dims), 3);
for (int i = 0; i < 3; ++i) { for (int i = 0; i < 3; ++i) {
......
...@@ -38,10 +38,11 @@ if(WITH_GPU) ...@@ -38,10 +38,11 @@ if(WITH_GPU)
add_simple_unittest(RowConvOpTest) add_simple_unittest(RowConvOpTest)
add_simple_unittest(BlockExpandOpTest) add_simple_unittest(BlockExpandOpTest)
add_simple_unittest(CropOpTest) add_simple_unittest(CropOpTest)
add_simple_unittest(DepthwiseConvOpTest)
endif() endif()
add_simple_unittest(ConvOpTest)
add_simple_unittest(Im2ColTest) add_simple_unittest(Im2ColTest)
add_simple_unittest(GemmConvOpTest)
endif() endif()
add_style_check_target(paddle_function ${h_files}) add_style_check_target(paddle_function ${h_files})
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"
namespace paddle {
enum TestType {
kForwardTest = 0,
kBackwardInputTest = 1,
kBackwardFilterTest = 2,
};
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
TestType type,
bool useGroups = true,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64}) {
if (inputChannels > outputChannels) break;
size_t groups;
if (!useGroups) {
groups = 1;
} else {
if (outputChannels % inputChannels != 0) continue;
groups = inputChannels;
}
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", algo));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter;
if (groups > 1)
filter = TensorShape({groups,
outputChannels / groups,
inputChannels / groups,
filterSize,
filterSize});
else
filter = TensorShape({outputChannels,
inputChannels,
filterSize,
filterSize});
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
ADD_TO);
test.run();
}
}
}
}
}
}
}
}
}
};
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
ConvolutionTest2(const std::string& conv1,
const std::string& conv2,
TestType type,
bool useGroups = true,
std::string algo = "auto") {
for (size_t batchSize : {16}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {7}) {
size_t groups;
if (!useGroups) {
groups = 1;
} else {
if (outputChannels % inputChannels != 0) continue;
groups = inputChannels;
}
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) /
stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", algo));
TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter;
if (groups > 1)
filter = TensorShape({groups,
outputChannels / groups,
inputChannels / groups,
filterHeight,
filterWidth});
else
filter = TensorShape({outputChannels,
inputChannels,
filterHeight,
filterWidth});
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};
if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
ADD_TO);
test.run();
}
}
}
}
}
}
}
}
}
};
// ======Start Convolution TEST======
TEST(Forward, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
}
#ifndef PADDLE_ONLY_CPU
TEST(Forward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
}
TEST(BackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU",
"GemmConvGradInput-GPU",
kBackwardInputTest,
false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU",
"GemmConvGradInput-GPU",
kBackwardInputTest,
false);
}
TEST(BackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU",
"GemmConvGradFilter-GPU",
kBackwardFilterTest,
false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU",
"GemmConvGradFilter-GPU",
kBackwardFilterTest,
false);
}
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConvForward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
}
TEST(DepthwiseConvBackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU",
"DepthwiseConvGradInput-GPU",
kBackwardInputTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU",
"DepthwiseConvGradInput-GPU",
kBackwardInputTest);
}
TEST(DepthwiseConvBackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU",
"DepthwiseConvGradFilter-GPU",
kBackwardFilterTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU",
"DepthwiseConvGradFilter-GPU",
kBackwardFilterTest);
}
#endif
// ======End DepthwiseConvolution TEST======
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "FunctionTest.h"
namespace paddle {
template <DeviceType DType1, DeviceType DType2>
void forward(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
}
template <DeviceType DType1, DeviceType DType2>
void backward_input(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
}
template <DeviceType DType1, DeviceType DType2>
void backward_filter(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO);
test.run();
}
template <DeviceType DType1, DeviceType DType2>
using Function = void (*)(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output);
/**
* \brief A basic convolution function test interface.
*
* \param conv1 type name of convolution function 1.
* \param conv2 type name of convolution function 2.
* \param function test function, can be one of the forward, backward_input
* backward_filter function.
* Example:
* 1. Compare GemmConv's CPU and GPU implementation:
* Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
* "GemmConv-CPU", "GemmConv-GPU", forward);
*/
template <DeviceType DType1, DeviceType DType2>
void Convolution(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {1, 5}) {
for (size_t inputSize : {7, 14, 31}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 16}) {
for (size_t outputChannels : {3, 16}) {
if (outputChannels < inputChannels) continue;
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for
* image height is not equal image width.
*/
template <DeviceType DType1, DeviceType DType2>
void Convolution2(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {4}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {7}) {
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter{
outputChannels, inputChannels, filterHeight, filterWidth};
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for depthwise convolution.
*/
template <DeviceType DType1, DeviceType DType2>
void DepthwiseConvolution(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {3, 4}) {
for (size_t inputChannels : {32}) {
for (size_t outputChannels : {32, 64}) {
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
// NNPACK only supports stride = 1 if batchSize > 1,
// and there has some bug when batchSize > 1 and groups != 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1)
break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
size_t groups = inputChannels;
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{groups,
outputChannels / groups,
inputChannels / groups,
filterSize,
filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
} // namespace paddle
...@@ -13,13 +13,25 @@ See the License for the specific language governing permissions and ...@@ -13,13 +13,25 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "ConvOpTest.h"
#include <paddle/framework/op_registry.h> namespace paddle {
USE_OP(mean); #ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConv, Forward) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "DepthwiseConv-GPU", forward);
}
TEST(DepthwiseConv, BackwardInput) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "DepthwiseConvGradInput-GPU", backward_input);
}
TEST(MeanOp, GetOpProto) { TEST(DepthwiseConv, BackwardFilter) {
auto& protos = paddle::framework::OpRegistry::protos(); DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
auto it = protos.find("mean"); "GemmConvGradFilter-CPU", "DepthwiseConvGradFilter-GPU", backward_filter);
ASSERT_NE(it, protos.end());
} }
#endif
} // namespace paddle
...@@ -93,8 +93,8 @@ TEST(Arguments, Matrix) { ...@@ -93,8 +93,8 @@ TEST(Arguments, Matrix) {
MatrixPtr matrix = Matrix::create(100, 200); MatrixPtr matrix = Matrix::create(100, 200);
CheckBufferArg check = [=](const BufferArg& arg) { CheckBufferArg check = [=](const BufferArg& arg) {
EXPECT_EQ(arg.shape().ndims(), 2U); EXPECT_EQ(arg.shape().ndims(), 2U);
EXPECT_EQ(arg.shape()[0], 100); EXPECT_EQ(arg.shape()[0], 100U);
EXPECT_EQ(arg.shape()[1], 200); EXPECT_EQ(arg.shape()[1], 200U);
EXPECT_EQ(arg.data(), matrix->getData()); EXPECT_EQ(arg.data(), matrix->getData());
EXPECT_EQ(arg.matrix<DEVICE_TYPE_CPU>().getHeight(), matrix->getHeight()); EXPECT_EQ(arg.matrix<DEVICE_TYPE_CPU>().getHeight(), matrix->getHeight());
...@@ -112,8 +112,8 @@ TEST(Arguments, Matrix) { ...@@ -112,8 +112,8 @@ TEST(Arguments, Matrix) {
TEST(Arguments, Vector) { TEST(Arguments, Vector) {
VectorPtr vector = Vector::create(100, false); VectorPtr vector = Vector::create(100, false);
CheckBufferArg check = [=](const BufferArg& arg) { CheckBufferArg check = [=](const BufferArg& arg) {
EXPECT_EQ(arg.shape().ndims(), 1); EXPECT_EQ(arg.shape().ndims(), 1U);
EXPECT_EQ(arg.shape()[0], 100); EXPECT_EQ(arg.shape()[0], 100U);
EXPECT_EQ(arg.data(), vector->getData()); EXPECT_EQ(arg.data(), vector->getData());
CpuVector inVector = arg.vector<real, DEVICE_TYPE_CPU>(); CpuVector inVector = arg.vector<real, DEVICE_TYPE_CPU>();
...@@ -131,9 +131,9 @@ TEST(Arguments, Vector) { ...@@ -131,9 +131,9 @@ TEST(Arguments, Vector) {
TEST(Arguments, CpuSparseMatrix) { TEST(Arguments, CpuSparseMatrix) {
CpuSparseMatrix sparse(200, 300, 50); CpuSparseMatrix sparse(200, 300, 50);
CheckBufferArg check = [=](const BufferArg& arg) { CheckBufferArg check = [=](const BufferArg& arg) {
EXPECT_EQ(arg.shape().ndims(), 2); EXPECT_EQ(arg.shape().ndims(), 2U);
EXPECT_EQ(arg.shape()[0], 200); EXPECT_EQ(arg.shape()[0], 200U);
EXPECT_EQ(arg.shape()[1], 300); EXPECT_EQ(arg.shape()[1], 300U);
EXPECT_EQ(arg.data(), sparse.getData()); EXPECT_EQ(arg.data(), sparse.getData());
// CHECK_EQ(arg.sparse().nnz(), 50); // CHECK_EQ(arg.sparse().nnz(), 50);
// CHECK_EQ(arg.sparse().dataFormat(), SPARSE_CSR_FORMAT); // CHECK_EQ(arg.sparse().dataFormat(), SPARSE_CSR_FORMAT);
...@@ -152,10 +152,10 @@ TEST(Arguments, CpuSparseMatrix) { ...@@ -152,10 +152,10 @@ TEST(Arguments, CpuSparseMatrix) {
TEST(Arguments, BufferArg) { TEST(Arguments, BufferArg) {
BufferArg arg(nullptr, VALUE_TYPE_FLOAT, {1, 2, 3}); BufferArg arg(nullptr, VALUE_TYPE_FLOAT, {1, 2, 3});
CheckBufferArg check = [=](const BufferArg& arg) { CheckBufferArg check = [=](const BufferArg& arg) {
EXPECT_EQ(arg.shape().ndims(), 3); EXPECT_EQ(arg.shape().ndims(), 3U);
EXPECT_EQ(arg.shape()[0], 1); EXPECT_EQ(arg.shape()[0], 1U);
EXPECT_EQ(arg.shape()[1], 2); EXPECT_EQ(arg.shape()[1], 2U);
EXPECT_EQ(arg.shape()[2], 3); EXPECT_EQ(arg.shape()[2], 3U);
}; };
BufferArgs argments; BufferArgs argments;
......
...@@ -13,10 +13,38 @@ See the License for the specific language governing permissions and ...@@ -13,10 +13,38 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <paddle/framework/op_registry.h> #include "ConvOpTest.h"
USE_OP(sgd);
TEST(SGDOp, GetOpProto) { namespace paddle {
auto& protos = paddle::framework::OpRegistry::protos();
auto it = protos.find("sgd"); TEST(GemmConv, NaiveConv) {
ASSERT_NE(it, protos.end()); Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"NaiveConv-CPU", "GemmConv-CPU", forward);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"NaiveConv-CPU", "GemmConv-CPU", forward);
} }
#ifndef PADDLE_ONLY_CPU
TEST(GemmConv, Forward) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "GemmConv-GPU", forward);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "GemmConv-GPU", forward);
}
TEST(GemmConv, BackwardInput) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
}
TEST(GemmConv, BackwardFilter) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
}
#endif
} // namespace paddle
...@@ -44,7 +44,7 @@ TEST(TensorShape, GetAndSet) { ...@@ -44,7 +44,7 @@ TEST(TensorShape, GetAndSet) {
EXPECT_EQ(t.ndims(), 3U); EXPECT_EQ(t.ndims(), 3U);
EXPECT_EQ(t.getElements(), 6U); EXPECT_EQ(t.getElements(), 6U);
EXPECT_EQ(t[1], 2); EXPECT_EQ(t[1], 2U);
t.setDim(1, 100); t.setDim(1, 100);
EXPECT_EQ(t.getElements(), 300U); EXPECT_EQ(t.getElements(), 300U);
EXPECT_EQ(t[1], 100U); EXPECT_EQ(t[1], 100U);
......
...@@ -196,30 +196,30 @@ public: ...@@ -196,30 +196,30 @@ public:
CHECK_EQ(status, nnp_status_success); CHECK_EQ(status, nnp_status_success);
} }
} else { } else {
for (size_t g = 0; g < groups_; g++) { // only supports stride = 1
// only supports stride = 1 CHECK_EQ(strideH(), 1);
CHECK_EQ(strideH(), 1); CHECK_EQ(strideW(), 1);
CHECK_EQ(strideW(), 1);
nnp_status status = // TODO(hedaoyuan): There has some bug when batchSize > 1 and groups_ > 1.
nnp_convolution_output(algorithm_, CHECK_EQ(groups_, static_cast<size_t>(1));
batchSize, nnp_status status = nnp_convolution_output(algorithm_,
inputChannels / groups_, batchSize,
outputChannels / groups_, inputChannels,
inputSize, outputChannels,
padding, inputSize,
kernelSize, padding,
inputData + inputOffset * g, kernelSize,
filterData + filterOffset * g, inputData,
nullptr, /* bias */ filterData,
outputData + outputOffset * g, nullptr, /* bias */
bufferPtr, outputData,
sizePtr, bufferPtr,
nnp_activation_identity, sizePtr,
nullptr, nnp_activation_identity,
threadpool_, /* threadpool */ nullptr,
nullptr); threadpool_, /* threadpool */
CHECK_EQ(status, nnp_status_success); nullptr);
} CHECK_EQ(status, nnp_status_success);
} }
} }
......
...@@ -13,87 +13,18 @@ See the License for the specific language governing permissions and ...@@ -13,87 +13,18 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/function/Function.h" #include "paddle/function/ConvOpTest.h"
#include "paddle/function/FunctionTest.h"
DEFINE_string(algo,
"auto",
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
"implicit-gemm, or direct) for computing convolution of NNPACK.");
namespace paddle { namespace paddle {
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \ TEST(NNPACK, Forward) {
if (algo == "direct" && filterSize != 1) continue; \ Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
if (algo == "direct" && batchSize != 1) continue; \ "GemmConv-CPU", "NNPACKConv-CPU", forward);
if (algo == "wt8x8" && filterSize != 3) continue; \ }
if (algo == "implicit-gemm" && batchSize != 1) continue; \
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64, 128}) {
if (inputChannels < outputChannels) break;
for (size_t stride : {1, 2}) {
// if batchSize > 1 NNPACKConv only supports stride = 1
if (batchSize > 1 && stride > 1) break;
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
IS_NNPACK_SUPPORT(algo, filterSize, stride);
LOG(INFO) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));
TensorShape shape0{
batchSize, inputChannels, inputSize, inputSize};
TensorShape shape1{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape shape2{
batchSize, outputChannels, outputSize, outputSize};
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
test.run();
}
}
}
}
}
}
}
}
};
TEST(Convolution, NNPACK) { TEST(NNPACK, Depthwise) {
// NNPACK only supports stride = 1 DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo); "GemmConv-CPU", "NNPACKConv-CPU", forward);
} }
} // namespace paddle } // namespace paddle
...@@ -23,6 +23,17 @@ endmacro() ...@@ -23,6 +23,17 @@ endmacro()
filter_test(GSERVER_HEADER) filter_test(GSERVER_HEADER)
filter_test(GSERVER_SOURCES) filter_test(GSERVER_SOURCES)
if(NOT WITH_MKLDNN)
file(GLOB_RECURSE DNN_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLDNN*.h")
file(GLOB_RECURSE DNN_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLDNN*.cpp")
list(REMOVE_ITEM GSERVER_HEADER ${DNN_HEADER})
list(REMOVE_ITEM GSERVER_SOURCES ${DNN_SOURCES})
message(STATUS "Skip compiling with MKLDNNLayers and MKLDNNActivations")
else()
message(STATUS "Compile with MKLDNNLayers and MKLDNNActivations")
endif()
if(NOT WITH_GPU) if(NOT WITH_GPU)
list(REMOVE_ITEM GSERVER_HEADER list(REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h layers/CudnnConvBaseLayer.h
......
...@@ -112,7 +112,6 @@ BEGIN_DEFINE_ACTIVATION(softmax) ...@@ -112,7 +112,6 @@ BEGIN_DEFINE_ACTIVATION(softmax)
private: private:
MatrixPtr sftMaxSum_; MatrixPtr sftMaxSum_;
MatrixPtr sftMaxDot_; MatrixPtr sftMaxDot_;
MatrixPtr one_;
public: public:
Error __must_check forward(Argument& act) { Error __must_check forward(Argument& act) {
...@@ -138,14 +137,6 @@ Error __must_check backward(Argument& act) { ...@@ -138,14 +137,6 @@ Error __must_check backward(Argument& act) {
1, 1,
/* trans */ false, /* trans */ false,
useGpu(act.deviceId)); useGpu(act.deviceId));
if (!one_ || one_->getWidth() != outputG->getWidth()) {
Matrix::resizeOrCreate(one_,
1,
outputG->getWidth(),
/* trans */ false,
useGpu(act.deviceId));
one_->one();
}
sftMaxDot_->dotMul(*outputG, *outputV); sftMaxDot_->dotMul(*outputG, *outputV);
sftMaxSum_->colMerge(*sftMaxDot_); sftMaxSum_->colMerge(*sftMaxDot_);
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
namespace paddle {
class KmaxSeqScoreLayer : public Layer {
private:
MatrixPtr scores_;
size_t beamSize_;
void kmaxScorePerSeq(const real* score,
real* sortedRes,
const ICpuGpuVectorPtr seqStartPos);
public:
explicit KmaxSeqScoreLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(kmax_seq_score, KmaxSeqScoreLayer);
bool KmaxSeqScoreLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
bool ret = Layer::init(layerMap, parameterMap);
CHECK_EQ(1U, inputLayers_.size());
beamSize_ = config_.beam_size();
CHECK_GE(beamSize_, 1U);
setNeedSequenceInfo(false);
setNeedGradient(false);
return ret;
}
void KmaxSeqScoreLayer::kmaxScorePerSeq(const real* scores,
real* sortedIds,
const ICpuGpuVectorPtr seqStartPos) {
int* starts = seqStartPos->getMutableData(false);
std::vector<real> indices;
for (size_t i = 0; i < seqStartPos->getSize() - 1; ++i) {
int seqLen = starts[i + 1] - starts[i];
int k = std::min(static_cast<int>(beamSize_), seqLen);
indices.resize(seqLen, 0);
std::iota(begin(indices), end(indices), 0.);
std::vector<real> tmpScore(scores + starts[i], scores + starts[i + 1]);
std::partial_sort(
begin(indices),
begin(indices) + k,
end(indices),
[&](size_t a, size_t b) { return tmpScore[a] > tmpScore[b]; });
memcpy(sortedIds + (i * beamSize_), indices.data(), k * sizeof(real));
}
}
void KmaxSeqScoreLayer::forward(PassType passType) {
Layer::forward(passType);
const Argument& input = getInput(0);
const MatrixPtr inputScore = getInputValue(0);
CHECK(input.hasSeq() || input.hasSubseq())
<< "input of " << getName()
<< " must be a sequence or a nested sequence.";
CHECK_EQ(input.value->getWidth(), 1UL)
<< "input of " << getName()
<< " is score over a sequence or a nested sequence, so its width "
<< " must be 1.";
if (useGpu_) {
// this Layer runs only in CPU, if the model is runing on GPU,
// then copy the input to this layer from GPU to CPU.
Matrix::resizeOrCreate(scores_,
inputScore->getHeight(),
1,
false /* trans */,
false /* useGpu */);
scores_->copyFrom(*inputScore);
} else {
scores_ = inputScore;
}
Matrix::resizeOrCreate(
output_.value,
input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
beamSize_,
false,
false);
output_.value->one();
output_.value->mulScalar(-1.);
kmaxScorePerSeq(scores_->getData(),
output_.value->getData(),
input.hasSubseq() ? input.subSequenceStartPositions
: input.sequenceStartPositions);
}
void KmaxSeqScoreLayer::backward(const UpdateCallback& callback) {}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "mkldnn.hpp"
namespace paddle {
typedef enum {
MKLDNN_BASE = 1, // basical info of MKLDNN
MKLDNN_TESTS = 1, // gtest info of MKLDNN
MKLDNN_SIZES = 2, // size info of MKLDNN
MKLDNN_FMTS = 3, // format info of MKLDNN
MKLDNN_ALL = 4, // show all info of MKLDNN
} MKLDNN_LOG_LEVEL;
/**
* @brief MKLDNN CPU engine.
*
*/
class CPUEngine {
public:
static CPUEngine& Instance() {
// Thread-safe in C++11.
static CPUEngine myInstance;
return myInstance;
}
// Disallow copy or move
CPUEngine(const CPUEngine&) = delete; // Copy constructor
CPUEngine(CPUEngine&&) = delete; // Move constructor
CPUEngine& operator=(const CPUEngine&) = delete; // Copy assignment
CPUEngine& operator=(CPUEngine&&) = delete; // Move assignment
mkldnn::engine& getEngine() { return cpuEngine_; }
protected:
CPUEngine() : cpuEngine_(mkldnn::engine::cpu, 0) {}
// CPUEngine() : cpuEngine_(mkldnn::engine::cpu_lazy, 0) {}
~CPUEngine() {}
private:
mkldnn::engine cpuEngine_;
};
/**
* @brief MKLDNN Stream.
*
*/
class MKLDNNStream {
public:
MKLDNNStream() : ready_(false) { resetState(); }
virtual ~MKLDNNStream() {}
/**
* @brief Submit stream
* @param prims The primitives vector
* @param block Waiting for the stream to complete
*/
void submit(std::vector<mkldnn::primitive>& prims, bool block = true) {
resetState();
stream_->submit(prims).wait(block);
ready_ = false;
}
/**
* @brief Reset the mkldnn stream
*/
void resetState() {
if (ready_) {
return;
}
// TODO(TJ): change me when mkldnn have method to reset this state
// stream_.reset(new mkldnn::stream(mkldnn::stream::kind::lazy));
stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager));
ready_ = true;
}
private:
bool ready_;
std::shared_ptr<mkldnn::stream> stream_;
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNFcLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;
namespace paddle {
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
CHECK_EQ(inputLayers_.size(), parameters_.size());
CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";
// output size, cat not be changed
oc_ = getSize();
oh_ = 1;
ow_ = 1;
// input size can not change in FC
iLayerSize_ = inputLayers_[0]->getSize();
CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);
// create weight
weight_ =
std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));
// create biases
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
}
return true;
}
void MKLDNNFcLayer::convertWeightsFromPaddle() {
if (FLAGS_use_mkldnn_wgt) {
return;
}
if (hasInitedWgt_) {
return;
}
// The weight_ is transposed from initial paddle weight
MatrixPtr paddleWgt = Matrix::create(
weight_->getW()->getData(), iLayerSize_, oc_, false, false);
// TODO(TJ): remove this print when do not need differ weights
std::ostringstream ostr;
paddleWgt->print(ostr);
VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str();
// The mkldnn weight is transposed from initial paddle matrix
MatrixPtr paddleWgtT;
paddleWgt->transpose(paddleWgtT, true);
weight_->getW()->copyFrom(*paddleWgtT);
hasInitedWgt_ = true;
}
void MKLDNNFcLayer::convertWeightsToPaddle() {
MatrixPtr dnnWgt = weight_->getW();
MatrixPtr paddleWgt;
dnnWgt->transpose(paddleWgt, true);
// copy paddle weight and override on weight_
MatrixPtr dnnWgtT = Matrix::create(
dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false);
dnnWgtT->copyFrom(*paddleWgt);
}
void MKLDNNFcLayer::reshape() {
const Argument& input = getInput(0);
int batchSize = input.getBatchSize();
if (bs_ == batchSize) {
return;
}
bs_ = batchSize;
ih_ = input.getFrameHeight();
iw_ = input.getFrameWidth();
if (ih_ == 0) {
ih_ = 1;
}
if (iw_ == 0) {
iw_ = 1;
}
hasSpatial_ = true;
if (ih_ == 1 && iw_ == 1) {
hasSpatial_ = false;
}
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
ic_ = iLayerSize_ / (ih_ * iw_);
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
CHECK_EQ(size_t(oc_), getSize());
printSizeInfo();
// reset output
output_.setFrameHeight(oh_);
output_.setFrameWidth(ow_);
resetOutput(bs_, oc_);
// reset mkldnn forward
resetFwd();
needResetBwd_ = true;
convertWeightsFromPaddle();
}
void MKLDNNFcLayer::resetFwd() {
bool hasBias = biases_ && biases_->getW();
real* iData = getInputValue(0)->getData();
real* oData = getOutputValue()->getData();
real* wData = weight_->getW()->getData();
real* bData = hasBias ? biases_->getW()->getData() : NULL;
// TODO(TJ): below create should be covered in MkldnnMatrix
// create memory desc
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
: createMD({bs_, ic_}, format::nc);
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
: createMD({oc_, ic_}, format::oi);
memory::desc bMD = bData != NULL ? createMD({oc_}, format::x)
: createMD({}, format::format_undef);
memory::desc oMD = createMD({bs_, oc_}, format::nc);
// create memory primitive desc and memory self
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
wgtVal_.reset(new memory(memory::primitive_desc(wMD, engine_), wData));
outVal_.reset(new memory(memory::primitive_desc(oMD, engine_), oData));
prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = bData != NULL ? fc_fwd::desc(pk, iMD, wMD, bMD, oMD)
: fc_fwd::desc(pk, iMD, wMD, oMD);
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
if (bData != NULL) {
biasVal_.reset(new memory(memory::primitive_desc(bMD, engine_), bData));
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
} else {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
}
pipelineFwd_.clear();
pipelineFwd_.push_back(*fwd_);
}
void MKLDNNFcLayer::resetBwd() {
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
bool hasBias = biases_ && biases_->getWGrad();
real* iData = getInputValue(0)->getData();
real* iDiff = getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL;
real* oDiff = getOutputGrad()->getData();
real* wDiff = weight_->getWGrad()->getData();
real* bDiff = hasBias ? biases_->getWGrad()->getData() : NULL;
/// backward weight
// create memory desc for backward memory
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
: createMD({bs_, ic_}, format::nc);
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
: createMD({oc_, ic_}, format::oi);
memory::desc oMD = createMD({bs_, oc_}, format::nc);
memory::desc bMD = bDiff != NULL ? createMD({oc_}, format::x)
: createMD({}, format::format_undef);
if (inVal_) {
// update data
inVal_->set_data_handle(iData);
} else {
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
}
// create memory primitive desc and memory self
wgtGrad_.reset(new memory(memory::primitive_desc(wMD, engine_), wDiff));
outGrad_.reset(new memory(memory::primitive_desc(oMD, engine_), oDiff));
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, iMD, wMD, oMD);
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
fc_bwdWgt::desc bwdWgtDesc = bDiff != NULL
? fc_bwdWgt::desc(iMD, wMD, bMD, oMD)
: fc_bwdWgt::desc(iMD, wMD, oMD);
fc_bwdWgt::primitive_desc bwdWgtPD =
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
if (bDiff != NULL) {
biasGrad_.reset(new memory(memory::primitive_desc(bMD, engine_), bDiff));
bwdWgt_.reset(
new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
} else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
}
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwdWgt_);
/// backward data
if (iDiff == NULL) {
return;
}
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(iMD, wMD, oMD);
fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
inGrad_.reset(new memory(memory::primitive_desc(iMD, engine_), iDiff));
CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
pipelineBwd_.push_back(*bwdData_);
}
void MKLDNNFcLayer::forward(PassType passType) {
Layer::forward(passType);
reshape();
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
// update input data
// since it might be changed if this is after data layer
real* iData = getInputValue(0)->getData();
inVal_->set_data_handle(iData);
// just submit forward pipeline
stream_->submit(pipelineFwd_);
}
/* activation */ {
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
}
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
/* Do derivation */ {
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
resetBwd();
// update diff
real* oDiff = getOutputGrad()->getData();
outGrad_->set_data_handle(oDiff);
// just sumbmit backward pipeline
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
/**
* @brief A subclass of MKLDNNLayer fc layer.
*
* The config file api is mkldnn_fc
*/
class MKLDNNFcLayer : public MKLDNNLayer {
protected:
// input layer size, can not be change after init
size_t iLayerSize_; // == ic * ih * iw
// if has already init the weight
bool hasInitedWgt_;
// if input layer has image size info (ih>1 && iw>1)
bool hasSpatial_;
// fc weight and bias
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_;
public:
explicit MKLDNNFcLayer(const LayerConfig& config)
: MKLDNNLayer(config), hasInitedWgt_(false), hasSpatial_(true) {}
~MKLDNNFcLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
/**
* reshape the input image sizes
* and reset output buffer size
* and reset mkldnn forward
*/
void reshape();
/**
* reset the forward primitve and memory
* only would be called when input size changes
*/
void resetFwd();
/**
* reset the backward primitve and memory for mkldnn fc
* only would be called when needed
*/
void resetBwd();
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "Layer.h"
#include "MKLDNNBase.h"
#include "mkldnn.hpp"
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
namespace paddle {
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
/**
* @brief Base class of MKLDNNlayer.
*
*/
class MKLDNNLayer : public Layer {
protected:
// batch size
int bs_;
// input image channel, height and width
int ic_, ih_, iw_;
// output image channel, height and width
int oc_, oh_, ow_;
// backward also need reset after reset forward handle
bool needResetBwd_;
// mkldnn engine, stream and primivtives
mkldnn::engine engine_;
std::shared_ptr<MKLDNNStream> stream_;
std::shared_ptr<mkldnn::primitive> fwd_;
std::shared_ptr<mkldnn::primitive> bwdWgt_;
std::shared_ptr<mkldnn::primitive> bwdData_;
std::vector<mkldnn::primitive> pipelineFwd_;
std::vector<mkldnn::primitive> pipelineBwd_;
// TODO(TJ): change below memory as MKLDNNMatrixPtr type
std::shared_ptr<mkldnn::memory> inVal_;
std::shared_ptr<mkldnn::memory> inGrad_;
std::shared_ptr<mkldnn::memory> outVal_;
std::shared_ptr<mkldnn::memory> outGrad_;
std::shared_ptr<mkldnn::memory> wgtVal_;
std::shared_ptr<mkldnn::memory> wgtGrad_;
std::shared_ptr<mkldnn::memory> biasVal_;
std::shared_ptr<mkldnn::memory> biasGrad_;
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
bs_(0),
ic_(0),
ih_(0),
iw_(0),
oc_(0),
oh_(0),
ow_(0),
needResetBwd_(true),
engine_(mkldnn::engine::cpu, 0),
stream_(nullptr),
fwd_(nullptr),
bwdWgt_(nullptr),
bwdData_(nullptr) {}
~MKLDNNLayer() {}
virtual bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
<< "Please set WITH_MKLDNN=ON "
<< "and set use_mkldnn=True";
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
// TODO(TJ): deivecId
return true;
}
/**
* convert weight from paddle format to mkldnn format
* weight_ will be override
*/
virtual void convertWeightsFromPaddle() {}
/**
* convert mkldnn weight to paddle format
* weight_ will be override
*/
virtual void convertWeightsToPaddle() {}
/**
* print info about sizes
*/
virtual void printSizeInfo() {
VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
<< ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
<< ", oh: " << oh_ << ", ow: " << ow_;
}
// TODO(TJ): move to MkldnnMatrix
// create memory desc
inline mkldnn::memory::desc createMD(
mkldnn::memory::dims dims,
mkldnn::memory::format fmt,
mkldnn::memory::data_type type = mkldnn::memory::data_type::f32) {
// TODO(TJ): isFmtSuppoted(fmt)
return mkldnn::memory::desc(dims, type, fmt);
}
};
} // namespace paddle
...@@ -96,7 +96,7 @@ void SubNestedSequenceLayer::calSelectedCols( ...@@ -96,7 +96,7 @@ void SubNestedSequenceLayer::calSelectedCols(
for (size_t i = 0; i < seqNum; ++i) { for (size_t i = 0; i < seqNum; ++i) {
for (size_t j = 0; j < beamSize; ++j) { for (size_t j = 0; j < beamSize; ++j) {
if (selectedIndices->getElement(i, j) == -1.) break; if (selectedIndices->getElement(i, j) == -1.) break;
int selSubSeqIdx = selectedIndices->getElement(i, j); size_t selSubSeqIdx = selectedIndices->getElement(i, j);
CHECK_GT(inputSeqInfoVec_[i].size() - 1, selSubSeqIdx); CHECK_GT(inputSeqInfoVec_[i].size() - 1, selSubSeqIdx);
size_t subSeqLen = inputSeqInfoVec_[i][selSubSeqIdx + 1] - size_t subSeqLen = inputSeqInfoVec_[i][selSubSeqIdx + 1] -
...@@ -135,7 +135,7 @@ void SubNestedSequenceLayer::forward(PassType passType) { ...@@ -135,7 +135,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer " CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer "
<< "must be a nested sequence."; << "must be a nested sequence.";
const MatrixPtr selectedIndices = getInputValue(1); const MatrixPtr selectedIndices = getInputValue(1);
CHECK_EQ(inputSeq.getNumSequences(), selectedIndices->getHeight()); CHECK_EQ(size_t(inputSeq.getNumSequences()), selectedIndices->getHeight());
if (dynamic_cast<GpuMatrix*>(selectedIndices.get())) { if (dynamic_cast<GpuMatrix*>(selectedIndices.get())) {
/* /*
......
...@@ -9,7 +9,7 @@ add_unittest_without_exec(test_ProtoDataProvider ...@@ -9,7 +9,7 @@ add_unittest_without_exec(test_ProtoDataProvider
# mkdir will get error. # mkdir will get error.
add_test(NAME test_ProtoDataProvider add_test(NAME test_ProtoDataProvider
COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
################# test_LayerGrad ####################### ################# test_LayerGrad #######################
add_unittest_without_exec(test_LayerGrad add_unittest_without_exec(test_LayerGrad
...@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad ...@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad
add_test(NAME test_LayerGrad add_test(NAME test_LayerGrad
COMMAND test_LayerGrad) COMMAND test_LayerGrad)
########## test_Mkldnn layers and activations ##########
if(WITH_MKLDNN)
add_unittest_without_exec(test_MKLDNN
test_MKLDNN.cpp
MKLDNNTester.cpp
LayerGradUtil.cpp)
add_test(NAME test_MKLDNN COMMAND test_MKLDNN)
endif()
################ test_CRFLayerGrad #################### ################ test_CRFLayerGrad ####################
add_unittest_without_exec(test_CRFLayerGrad add_unittest_without_exec(test_CRFLayerGrad
test_CRFLayerGrad.cpp test_CRFLayerGrad.cpp
...@@ -66,6 +75,16 @@ add_unittest_without_exec(test_BatchNorm ...@@ -66,6 +75,16 @@ add_unittest_without_exec(test_BatchNorm
add_test(NAME test_BatchNorm add_test(NAME test_BatchNorm
COMMAND test_BatchNorm) COMMAND test_BatchNorm)
################# test_KmaxSeqScore #######################
add_unittest_without_exec(test_KmaxSeqScore
test_KmaxSeqScore.cpp
LayerGradUtil.cpp)
add_test(NAME test_KmaxSeqScore
COMMAND test_KmaxSeqScore)
################## test_Evaluator ####################### ################## test_Evaluator #######################
add_unittest(test_Evaluator add_unittest(test_Evaluator
test_Evaluator.cpp) test_Evaluator.cpp)
...@@ -82,8 +101,8 @@ if(WITH_PYTHON) ...@@ -82,8 +101,8 @@ if(WITH_PYTHON)
test_PyDataProvider.cpp) test_PyDataProvider.cpp)
add_test(NAME test_PyDataProvider add_test(NAME test_PyDataProvider
COMMAND .set_python_path.sh -d ./gserver/tests:${PROJ_ROOT}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider COMMAND .set_python_path.sh -d ./gserver/tests:${PADDLE_SOURCE_DIR}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif() endif()
############### test_RecurrentLayer ####################### ############### test_RecurrentLayer #######################
...@@ -96,7 +115,7 @@ if(NOT WITH_DOUBLE) ...@@ -96,7 +115,7 @@ if(NOT WITH_DOUBLE)
add_test(NAME test_WarpCTCLayer add_test(NAME test_WarpCTCLayer
COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_WarpCTCLayer --warpctc_dir=${WARPCTC_LIB_DIR} COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_WarpCTCLayer --warpctc_dir=${WARPCTC_LIB_DIR}
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif() endif()
############### test_RecurrentGradientMachine ############### ############### test_RecurrentGradientMachine ###############
...@@ -106,20 +125,20 @@ add_unittest_without_exec(test_RecurrentGradientMachine ...@@ -106,20 +125,20 @@ add_unittest_without_exec(test_RecurrentGradientMachine
test_RecurrentGradientMachine.cpp) test_RecurrentGradientMachine.cpp)
add_test(NAME test_RecurrentGradientMachine add_test(NAME test_RecurrentGradientMachine
COMMAND .set_python_path.sh -d COMMAND .set_python_path.sh -d
${PROJ_ROOT}/python:${PROJ_ROOT}/paddle/gserver/tests ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests
${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine ${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
add_unittest_without_exec(test_NetworkCompare add_unittest_without_exec(test_NetworkCompare
test_NetworkCompare.cpp) test_NetworkCompare.cpp)
if(WITH_GPU) if(WITH_GPU)
add_test(NAME test_NetworkCompare add_test(NAME test_NetworkCompare
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
else() else()
add_test(NAME test_NetworkCompare add_test(NAME test_NetworkCompare
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif() endif()
...@@ -127,6 +146,6 @@ add_unittest_without_exec(test_PyDataProvider2 ...@@ -127,6 +146,6 @@ add_unittest_without_exec(test_PyDataProvider2
test_PyDataProvider2.cpp) test_PyDataProvider2.cpp)
add_test(NAME test_PyDataProvider2 add_test(NAME test_PyDataProvider2
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/paddle/gserver/tests:${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2 COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/paddle/gserver/tests:${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2
WORKING_DIRECTORY ${PROJ_ROOT}/paddle WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
) )
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle {
// init data layer and test layer of both dnn and reference
void MKLDNNTester::reset(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize) {
const bool trans = false;
const bool useGpu = false;
// clear
configs_.clear();
layerNames_.clear();
dataLayers_.clear();
datas_.clear();
layerMaps_.clear();
parameters_.clear();
testLayers_.clear();
// resize
configs_.resize(NUM);
layerNames_.resize(NUM);
dataLayers_.resize(NUM);
datas_.resize(NUM);
layerMaps_.resize(NUM);
parameters_.resize(NUM);
testLayers_.resize(NUM);
// reset configs and layer names
configs_[DNN] = dnn;
configs_[REF] = ref;
layerNames_[DNN] = "mkldnn"; // the first is mkldnn layer
layerNames_[REF] = "reference"; // second is reference layer
// reset others
for (size_t i = 0; i < NUM; ++i) {
configs_[i].layerConfig.set_name(layerNames_[i]);
initDataLayer(configs_[i],
&(dataLayers_[i]),
&(datas_[i]),
&(layerMaps_[i]),
layerNames_[i],
batchSize,
trans,
useGpu);
initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF];
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
setInputImgSize();
}
void MKLDNNTester::setInputImgSize() {
for (size_t n = 0; n < dataLayers_.size(); ++n) {
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
// TODO(TJ): fix me when concat and elewise ready
dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
}
}
}
// init randome parameters of ref, and copy to mkldnn
void MKLDNNTester::randomWgtDatas() {
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
for (size_t i = 0; i < parameters_[REF].size(); ++i) {
const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
parameters_[REF][i]->randomize();
dnnValue->copyFrom(*refValue);
VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
printVector(dnnValue);
}
}
// random botdata of ref layer and copy same to mkldnn
void MKLDNNTester::randomBotDatas() {
CHECK_EQ(dataLayers_.size(), NUM);
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
dataLayers_[DNN][i]->getOutputValue()->copyFrom(
*(dataLayers_[REF][i]->getOutputValue()));
VLOG(lvl_) << "Input " << i << " data:";
printMatrix(dataLayers_[REF][i]->getOutputValue());
}
}
void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform();
dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad());
}
void MKLDNNTester::checkForward() {
printTopDatas();
double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward";
EXPECT_LE(fabs(delta), eps_);
}
void MKLDNNTester::checkBackwardData() {
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
printMatrix(dnnDiff);
VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
printMatrix(refDiff);
double delta = compareMatrix(dnnDiff, refDiff);
EXPECT_LE(fabs(delta), eps_);
// TODO(TJ): uncomment me when batch norm ready
// if (isBN) {
// // the other two inputs in batch norm are for moving mean and var
// break;
// }
}
}
void MKLDNNTester::checkBackwardWgts() {
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
const MKLDNNLayerPtr dnnlayer =
std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
CHECK(dnnlayer);
dnnlayer->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
printVector(dnn);
VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
printVector(ref);
double delta = compareVector(dnn, ref);
EXPECT_LE(fabs(delta), eps_);
}
VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
restoreWgt(dnnWgts, parameters_[DNN]);
}
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
vector<VectorPtr>& to) {
const bool useGpu = false;
to.resize(from.size());
for (size_t i = 0; i < to.size(); ++i) {
const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
to[i] = Vector::create(wgt->getSize(), useGpu);
to[i]->copyFrom(*wgt);
}
}
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
vector<ParameterPtr>& to) {
CHECK_EQ(from.size(), to.size());
for (size_t i = 0; i < from.size(); ++i) {
const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
wgt->copyFrom(*from[i]);
}
}
// clear parameters grad
void MKLDNNTester::clearWgtDiffs() {
for (size_t n = 0; n < parameters_.size(); ++n) {
for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) {
grad->zeroMem();
}
}
}
}
void MKLDNNTester::clearBotDiffs() {
// dnn and ref
for (size_t n = 0; n < dataLayers_.size(); ++n) {
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
}
void MKLDNNTester::clearBotDiffs(int n) {
CHECK_LT(n, NUM);
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
void MKLDNNTester::clearTopDatas() {
for (size_t i = 0; i < testLayers_.size(); ++i) {
testLayers_[i]->getOutputValue()->zeroMem();
}
}
void MKLDNNTester::printTopDatas() {
if (!log_) {
return;
}
for (int n = 0; n < NUM; ++n) {
VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
printMatrix(testLayers_[n]->getOutputValue());
}
}
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
if (!log_) {
return;
}
std::ostringstream ostr;
m->print(ostr);
VLOG(lvl_) << std::endl << ostr.str();
}
void MKLDNNTester::printVector(const VectorPtr& v) {
if (!log_) {
return;
}
std::ostringstream ostr;
v->print(ostr, v->getSize());
VLOG(lvl_) << std::endl << ostr.str();
}
double MKLDNNTester::getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate,
const float thres) {
double delta = 0, sum = 0;
int failCnt = 0;
const double eps = 1e-5;
double maxOut = 0;
for (size_t i = 0; i < len; ++i) {
double ref = fabs(d2[i]);
double diff = fabs(d1[i] - d2[i]);
delta += diff;
sum += ref;
if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
maxOut = std::max(maxOut, diff / ref);
failCnt++;
}
}
EXPECT_TRUE(std::isnormal(sum));
EXPECT_FALSE(std::isinf(sum));
EXPECT_FALSE(std::isnan(delta));
VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
<< ", delta: " << delta / sum << ", failCnt:" << failCnt;
return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
CHECK_EQ(v1->getSize(), v2->getSize());
return getDelta(v1->getData(), v2->getData(), v1->getSize());
}
void MKLDNNTester::runOnce() {
// test forward
randomBotDatas();
dnnLayer_->forward(PASS_TRAIN);
refLayer_->forward(PASS_TRAIN);
checkForward();
// test backward
randomTopDiffs();
dnnLayer_->backward(nullptr);
refLayer_->backward(nullptr);
checkBackwardData();
checkBackwardWgts();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
clearBotDiffs(REF);
}
void MKLDNNTester::run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH,
size_t inputImgW,
size_t iter,
float epsilon,
bool log,
int level) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
<< " vs " << ref.layerConfig.type();
ih_ = inputImgH;
iw_ = inputImgW;
iter_ = iter;
eps_ = epsilon;
log_ = log;
lvl_ = level;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt = false;
// reset and run once
reset(dnn, ref, batchSize);
randomWgtDatas();
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt = true;
// after run once the mkldnn weight has been stored in dnnlayer
// then save the weights and restart again
vector<VectorPtr> dnnWgts, refWgts;
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
saveWgt(parameters_[DNN], dnnWgts);
saveWgt(parameters_[REF], refWgts);
// restart again with flag true
reset(dnn, ref, batchSize);
// restore wgt
restoreWgt(dnnWgts, parameters_[DNN]);
restoreWgt(refWgts, parameters_[REF]);
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
namespace paddle {
/**
* @brief test the functionality of Mkldnnlayers
* refer to paddle original function
*/
class MKLDNNTester {
enum {
DNN = 0, // MKLDNN layer
REF = 1, // Reference layer
NUM = 2, // Number of total
};
protected:
std::vector<TestConfig> configs_;
vector<string> layerNames_;
vector<vector<DataLayerPtr>> dataLayers_;
vector<vector<Argument>> datas_;
vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_;
LayerPtr dnnLayer_, refLayer_;
/// run some iterations, all the result should pass
size_t iter_;
/// whether to print out the details
bool log_;
/// vlog level to print the matrix details datas
int lvl_;
/// epsilon
float eps_;
/// input image size, default 1
size_t ih_, iw_;
public:
explicit MKLDNNTester(size_t iter = 3, float epsilon = 1e-4) {
iter_ = iter;
eps_ = epsilon;
log_ = false;
lvl_ = MKLDNN_ALL;
}
~MKLDNNTester() {}
public:
void run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH = 1,
size_t inputImgW = 1,
size_t iter = 3,
float epsilon = 1e-4,
bool log = false,
int level = MKLDNN_ALL);
void setLogLevel(int lvl) { lvl_ = lvl; }
private:
void reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize);
void setInputImgSize();
void runOnce();
void randomWgtDatas();
void randomBotDatas();
void randomTopDiffs();
void checkForward();
void checkBackwardData();
void checkBackwardWgts();
void clearWgtDiffs();
void clearBotDiffs();
void clearBotDiffs(int n); // clear specific layer
void clearTopDatas();
void printTopDatas();
void printMatrix(const MatrixPtr& m);
void printVector(const VectorPtr& v);
void saveWgt(const vector<ParameterPtr>& from, vector<VectorPtr>& to);
void restoreWgt(const vector<VectorPtr>& from, vector<ParameterPtr>& to);
double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2);
double compareVector(const VectorPtr& v1, const VectorPtr& v2);
/**
* Get delta percent
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
*/
double getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate = 1e-3,
const float thres = 0.1);
};
} // namespace paddle
此差异已折叠。
此差异已折叠。
...@@ -15,13 +15,13 @@ ...@@ -15,13 +15,13 @@
file(GLOB MATH_HEADERS . *.h) file(GLOB MATH_HEADERS . *.h)
file(GLOB MATH_SOURCES . *.cpp) file(GLOB MATH_SOURCES . *.cpp)
set(MATH_SOURCES set(MATH_SOURCES
"${PROJ_ROOT}/paddle/math/BaseMatrix.cu" "${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu"
"${PROJ_ROOT}/paddle/math/TrainingAlgorithmOp.cu" "${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu"
${MATH_SOURCES}) ${MATH_SOURCES})
if(NOT WITH_GPU) if(NOT WITH_GPU)
# then compile BaseMatrix.cu as c++ file # then compile BaseMatrix.cu as c++ file
compile_cu_as_cpp("${PROJ_ROOT}/paddle/math/BaseMatrix.cu") compile_cu_as_cpp("${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu")
compile_cu_as_cpp("${PROJ_ROOT}/paddle/math/TrainingAlgorithmOp.cu") compile_cu_as_cpp("${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu")
add_library(paddle_math STATIC add_library(paddle_math STATIC
${MATH_SOURCES}) ${MATH_SOURCES})
else() else()
......
...@@ -302,6 +302,10 @@ public: ...@@ -302,6 +302,10 @@ public:
bool isSparse() const { return true; } bool isSparse() const { return true; }
private: private:
using Matrix::mul;
using Matrix::copyFrom; using Matrix::copyFrom;
using Matrix::rowMax;
using Matrix::print;
using Matrix::subMatrix;
}; };
} // namespace paddle } // namespace paddle
...@@ -231,6 +231,9 @@ public: ...@@ -231,6 +231,9 @@ public:
private: private:
using Matrix::mul; using Matrix::mul;
using Matrix::copyFrom; using Matrix::copyFrom;
using Matrix::rowMax;
using Matrix::print;
using Matrix::subMatrix;
}; };
} // namespace paddle } // namespace paddle
此差异已折叠。
此差异已折叠。
...@@ -16,4 +16,6 @@ ...@@ -16,4 +16,6 @@
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/add_op.h" #include "paddle/operators/add_op.h"
REGISTER_OP_GPU_KERNEL(add_two, ops::AddKernel<ops::GPUPlace, float>); namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(add_two,
ops::AddKernel<paddle::platform::GPUPlace, float>);
此差异已折叠。
...@@ -14,3 +14,8 @@ ...@@ -14,3 +14,8 @@
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include "paddle/operators/cross_entropy_op.h" #include "paddle/operators/cross_entropy_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<paddle::platform::GPUPlace, float>);
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册