Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
b07584dc
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b07584dc
编写于
4月 10, 2019
作者:
J
Jiabin Yang
提交者:
GitHub
4月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=release/1.4, refine test_imperative_transformer (#16737)
上级
cb9c59bd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
36 addition
and
24 deletion
+36
-24
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
...ddle/fluid/tests/unittests/test_imperative_transformer.py
+36
-24
未找到文件。
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
浏览文件 @
b07584dc
...
...
@@ -116,7 +116,7 @@ class ModelHyperParams(object):
# to process after each sub-layer
postprocess_cmd
=
"da"
# dropout + residual connection
# random seed used in dropout for CE.
dropout_seed
=
1
dropout_seed
=
None
# the flag indicating whether to share embedding and softmax weights.
# vocabularies in source and target should be same for weight sharing.
weight_sharing
=
True
...
...
@@ -166,15 +166,21 @@ def create_data(is_static=False):
]
else
:
enc_inputs
=
[
to_variable
(
src_word_np
),
to_variable
(
src_pos_np
),
to_variable
(
src_slf_attn_bias_np
)
to_variable
(
src_word_np
,
name
=
'src_word'
),
to_variable
(
src_pos_np
,
name
=
'src_pos'
),
to_variable
(
src_slf_attn_bias_np
,
name
=
'src_slf_attn_bias'
)
]
dec_inputs
=
[
to_variable
(
trg_word_np
),
to_variable
(
trg_pos_np
),
to_variable
(
trg_slf_attn_bias_np
),
to_variable
(
trg_src_attn_bias_np
)
to_variable
(
trg_word_np
,
name
=
'trg_word'
),
to_variable
(
trg_pos_np
,
name
=
'trg_pos'
),
to_variable
(
trg_slf_attn_bias_np
,
name
=
'trg_slf_attn_bias'
),
to_variable
(
trg_src_attn_bias_np
,
name
=
'trg_src_attn_bias'
)
]
label
=
to_variable
(
lbl_word_np
)
weight
=
to_variable
(
lbl_weight_np
)
label
=
to_variable
(
lbl_word_np
,
name
=
'lbl_word'
)
weight
=
to_variable
(
lbl_weight_np
,
name
=
'lbl_weight'
)
return
enc_inputs
,
dec_inputs
,
label
,
weight
...
...
@@ -211,7 +217,7 @@ def make_all_inputs(input_fields):
# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size
=
32
batch_size
=
-
1
# The placeholder for squence length in compile time.
seq_len
=
ModelHyperParams
.
max_length
# Here list the data shapes and data types of all inputs.
...
...
@@ -304,35 +310,40 @@ sync = False
batch_num
=
5
np
.
random
.
seed
=
1
np
.
random
.
seed
=
90
src_word_np
=
np
.
random
.
randint
(
1
,
ModelHyperParams
.
src_vocab_size
-
1
,
size
=
(
batch_size
,
seq_len
,
1
),
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
src_pos_np
=
np
.
random
.
randint
(
1
,
seq_len
,
size
=
(
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
src_slf_attn_bias_np
=
np
.
random
.
randn
(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
1
,
seq_len
,
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
src_slf_attn_bias_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
trg_word_np
=
np
.
random
.
randint
(
1
,
ModelHyperParams
.
src_vocab_size
-
1
,
size
=
(
batch_size
,
seq_len
,
1
),
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
trg_pos_np
=
np
.
random
.
randint
(
1
,
seq_len
,
size
=
(
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
trg_slf_attn_bias_np
=
np
.
random
.
randn
(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
trg_src_attn_bias_np
=
np
.
random
.
randn
(
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
1
,
seq_len
,
size
=
(
TrainTaskConfig
.
batch_size
,
seq_len
,
1
),
dtype
=
'int64'
)
trg_slf_attn_bias_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
trg_src_attn_bias_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
,
ModelHyperParams
.
n_head
,
seq_len
,
seq_len
).
astype
(
'float32'
)
lbl_word_np
=
np
.
random
.
randint
(
1
,
ModelHyperParams
.
src_vocab_size
-
1
,
size
=
(
batch_size
*
seq_len
,
1
),
size
=
(
TrainTaskConfig
.
batch_size
*
seq_len
,
1
),
dtype
=
'int64'
)
lbl_weight_np
=
np
.
random
.
randn
(
batch_size
*
seq_len
,
1
).
astype
(
'float32'
)
lbl_weight_np
=
np
.
random
.
randn
(
TrainTaskConfig
.
batch_size
*
seq_len
,
1
).
astype
(
'float32'
)
pos_inp1
=
position_encoding_init
(
ModelHyperParams
.
max_length
,
ModelHyperParams
.
d_model
)
...
...
@@ -447,7 +458,7 @@ class MultiHeadAttentionLayer(Layer):
x
=
v
,
shape
=
[
0
,
0
,
self
.
_n_head
,
self
.
_d_value
],
inplace
=
False
)
transpose_v
=
fluid
.
layers
.
transpose
(
x
=
reshaped_v
,
perm
=
[
0
,
2
,
1
,
3
])
#scale dot product attention
#
scale dot product attention
product
=
fluid
.
layers
.
matmul
(
x
=
transpose_q
,
y
=
transpose_k
,
...
...
@@ -971,6 +982,7 @@ class TestDygraphTransformer(unittest.TestCase):
enc_inputs
,
dec_inputs
,
label
,
weights
=
create_data
()
dy_sum_cost
,
dy_avg_cost
,
dy_predict
,
dy_token_num
=
transformer
(
enc_inputs
,
dec_inputs
,
label
,
weights
)
if
i
==
0
:
for
param
in
transformer
.
parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
...
...
@@ -978,6 +990,7 @@ class TestDygraphTransformer(unittest.TestCase):
dy_avg_cost
.
_backward
()
optimizer
.
minimize
(
dy_avg_cost
)
transformer
.
clear_gradients
()
if
i
==
batch_num
-
1
:
for
param
in
transformer
.
parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
...
...
@@ -1024,7 +1037,6 @@ class TestDygraphTransformer(unittest.TestCase):
static_param_name_list
=
list
()
static_sum_cost
,
static_avg_cost
,
static_predict
,
static_token_num
=
transformer
(
enc_inputs
,
dec_inputs
,
label
,
weights
)
optimizer
.
minimize
(
static_avg_cost
)
for
param
in
transformer
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
...
...
@@ -1042,8 +1054,8 @@ class TestDygraphTransformer(unittest.TestCase):
static_sum_cost
,
static_avg_cost
,
static_predict
,
static_token_num
]
fetch_list
.
extend
(
static_param_name_list
)
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feed_dict
,
fetch_list
=
fetch_list
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录