提交 ae0b0d5f 编写于 作者: D dengkaipeng

fix doc. test=develop

上级 56e21c55
...@@ -121,7 +121,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -121,7 +121,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"mask for calculate objectness loss in gradient kernel.") "mask for calculate objectness loss in gradient kernel.")
.AsIntermediate(); .AsIntermediate();
AddOutput("GTMatchMask", AddOutput("GTMatchMask",
"This is an intermediate tensor with shape if [N, B], " "This is an intermediate tensor with shape of [N, B], "
"B is the max box number of GT boxes. This parameter caches " "B is the max box number of GT boxes. This parameter caches "
"matched mask index of each GT boxes for gradient calculate.") "matched mask index of each GT boxes for gradient calculate.")
.AsIntermediate(); .AsIntermediate();
...@@ -175,7 +175,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -175,7 +175,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
thresh, the confidence score loss of this anchor box will be ignored. thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consist of three major parts, box location loss, Therefore, the yolov3 loss consist of three major parts, box location loss,
confidence score loss, and classification loss. The L1 loss is used for confidence score loss, and classification loss. The L2 loss is used for
box coordinates (w, h), and sigmoid cross entropy loss is used for box box coordinates (w, h), and sigmoid cross entropy loss is used for box
coordinates (x, y), confidence score loss and classification loss. coordinates (x, y), confidence score loss and classification loss.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册