Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
ae0b0d5f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae0b0d5f
编写于
1月 28, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc. test=develop
上级
56e21c55
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
2 addition
and
2 deletion
+2
-2
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+2
-2
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
ae0b0d5f
...
@@ -121,7 +121,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -121,7 +121,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"mask for calculate objectness loss in gradient kernel."
)
"mask for calculate objectness loss in gradient kernel."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"GTMatchMask"
,
AddOutput
(
"GTMatchMask"
,
"This is an intermediate tensor with shape
i
f [N, B], "
"This is an intermediate tensor with shape
o
f [N, B], "
"B is the max box number of GT boxes. This parameter caches "
"B is the max box number of GT boxes. This parameter caches "
"matched mask index of each GT boxes for gradient calculate."
)
"matched mask index of each GT boxes for gradient calculate."
)
.
AsIntermediate
();
.
AsIntermediate
();
...
@@ -175,7 +175,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -175,7 +175,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
thresh, the confidence score loss of this anchor box will be ignored.
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consist of three major parts, box location loss,
Therefore, the yolov3 loss consist of three major parts, box location loss,
confidence score loss, and classification loss. The L
1
loss is used for
confidence score loss, and classification loss. The L
2
loss is used for
box coordinates (w, h), and sigmoid cross entropy loss is used for box
box coordinates (w, h), and sigmoid cross entropy loss is used for box
coordinates (x, y), confidence score loss and classification loss.
coordinates (x, y), confidence score loss and classification loss.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录