Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
a89296ac
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a89296ac
编写于
1月 12, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add repeated fc relu pass
上级
f347d6e4
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
454 addition
and
1 deletion
+454
-1
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.cc
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.cc
+409
-0
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h
+41
-0
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
+2
-1
paddle/fluid/inference/api/paddle_pass_builder.h
paddle/fluid/inference/api/paddle_pass_builder.h
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a89296ac
...
...
@@ -43,6 +43,7 @@ pass_library(multi_batch_merge_pass base)
pass_library
(
conv_bn_fuse_pass inference
)
pass_library
(
seqconv_eltadd_relu_fuse_pass inference
)
pass_library
(
seqpool_concat_fuse_pass inference
)
pass_library
(
repeated_fc_relu_fuse_pass inference
)
pass_library
(
is_test_pass base
)
pass_library
(
conv_elementwise_add_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add2_act_fuse_pass inference
)
...
...
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.cc
0 → 100644
浏览文件 @
a89296ac
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h"
#include <algorithm> // for max
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#define MAX_NUM_FC 10
namespace
paddle
{
namespace
framework
{
namespace
ir
{
PDNode
*
BuildRepeatedFCReluPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
int
num_fc
)
{
auto
var_next_is_fc_act
=
[
=
](
Node
*
x
,
const
std
::
string
&
act_type
=
"relu"
,
bool
check_in_has_only_one_out
=
true
,
int
fc_idx
=
0
)
->
bool
{
bool
next_is_fc
=
x
&&
x
->
IsVar
()
&&
VarLinksToOp
(
x
,
"fc"
);
if
(
check_in_has_only_one_out
)
{
next_is_fc
=
next_is_fc
&&
x
->
outputs
.
size
()
==
1
;
}
if
(
!
next_is_fc
)
{
return
false
;
}
auto
*
fc_op
=
x
->
outputs
[
fc_idx
];
bool
next_is_act
=
fc_op
&&
fc_op
->
IsOp
()
&&
fc_op
->
outputs
.
size
()
==
1
&&
fc_op
->
outputs
[
0
]
&&
fc_op
->
outputs
[
0
]
->
IsVar
()
&&
VarLinksToOp
(
fc_op
->
outputs
[
0
],
act_type
)
&&
fc_op
->
outputs
[
0
]
->
outputs
.
size
()
==
1
;
if
(
!
next_is_act
)
{
return
false
;
}
auto
*
act_op
=
fc_op
->
outputs
[
0
]
->
outputs
[
0
];
return
act_op
&&
act_op
->
IsOp
()
&&
act_op
->
outputs
.
size
()
==
1
;
};
auto
find_fc_idx
=
[
=
](
Node
*
x
,
const
std
::
string
&
act_type
=
"relu"
)
->
int
{
bool
next_is_fc
=
x
&&
x
->
IsVar
()
&&
VarLinksToOp
(
x
,
"fc"
);
if
(
!
next_is_fc
)
{
return
0
;
}
for
(
size_t
k
=
0
;
k
<
x
->
outputs
.
size
();
++
k
)
{
auto
*
fc_op
=
x
->
outputs
[
k
];
bool
next_is_act
=
fc_op
&&
fc_op
->
IsOp
()
&&
fc_op
->
outputs
.
size
()
==
1
&&
fc_op
->
outputs
[
0
]
&&
fc_op
->
outputs
[
0
]
->
IsVar
()
&&
VarLinksToOp
(
fc_op
->
outputs
[
0
],
act_type
)
&&
fc_op
->
outputs
[
0
]
->
outputs
.
size
()
==
1
;
if
(
!
next_is_act
)
{
continue
;
}
auto
*
act_op
=
fc_op
->
outputs
[
0
]
->
outputs
[
0
];
if
(
act_op
&&
act_op
->
IsOp
()
&&
act_op
->
outputs
.
size
()
==
1
)
{
return
k
;
}
}
return
0
;
};
auto
next_var_of_part
=
[
=
](
Node
*
x
,
int
fc_idx
=
0
)
->
Node
*
{
return
x
->
outputs
[
fc_idx
]
->
outputs
[
0
]
->
outputs
[
0
]
->
outputs
[
0
];
};
auto
var_next_is_fc_act_repeated_n_times
=
[
=
](
Node
*
x
,
int
repeated_times
,
const
std
::
string
&
act_type
=
"relu"
,
bool
check_in_has_only_one_out
=
true
)
->
bool
{
for
(
int
i
=
0
;
i
<
repeated_times
;
++
i
)
{
if
(
!
var_next_is_fc_act
(
x
,
act_type
,
i
==
0
&&
check_in_has_only_one_out
))
{
return
false
;
}
x
=
next_var_of_part
(
x
);
}
return
true
;
};
auto
var_before_is_fc_act
=
[
=
](
Node
*
x
,
const
std
::
string
&
act_type
=
"relu"
,
bool
at_top
=
false
)
->
bool
{
bool
before_is_act
=
x
&&
x
->
IsVar
()
&&
x
->
inputs
.
size
()
==
1
&&
VarLinksFromOp
(
x
,
"relu"
);
if
(
!
before_is_act
)
{
return
false
;
}
auto
*
relu_op
=
x
->
inputs
[
0
];
// std::cout << "xxxx" << std::endl;
bool
before_is_fc
=
relu_op
->
IsOp
()
&&
relu_op
->
inputs
.
size
()
==
1
&&
relu_op
->
inputs
[
0
]
->
IsVar
()
&&
VarLinksFromOp
(
relu_op
->
inputs
[
0
],
"fc"
)
&&
relu_op
->
inputs
[
0
]
->
inputs
.
size
()
==
1
;
if
(
!
before_is_fc
)
{
return
false
;
}
auto
*
fc_op
=
relu_op
->
inputs
[
0
]
->
inputs
[
0
];
bool
is_fc
=
fc_op
->
IsOp
()
&&
fc_op
->
inputs
.
size
()
==
3
;
// std::cout << "*****" << fc_op->inputs.size() << std::endl;
if
(
!
is_fc
)
{
return
false
;
}
for
(
size_t
kkk
=
0
;
kkk
<
3
;
++
kkk
)
{
// std::cout << "++++++" << kkk << std::endl;
if
(
!
fc_op
->
inputs
[
kkk
]
->
inputs
.
empty
())
{
if
(
at_top
)
{
return
true
;
}
else
{
bool
res
=
VarLinksFromOp
(
fc_op
->
inputs
[
kkk
],
"relu"
);
// std::cout << fc_op->inputs[kkk]->Name() << "++++++-----" << kkk <<
// ":"
// << res << std::endl;
return
res
;
}
}
}
// for (auto* fc_i : fc_op->inputs) {
// if (!fc_i->inputs.empty()) {
// std::cout << "++++++" << fc_op->inputs.size()<<std::endl;
// return VarLinksFromOp(fc_i, "relu");
// }
// }
return
false
;
};
auto
before_var_of_part
=
[
=
](
Node
*
x
)
->
Node
*
{
auto
*
fc_op
=
x
->
inputs
[
0
]
->
inputs
[
0
];
for
(
auto
*
fc_i
:
fc_op
->
inputs
)
{
if
(
!
fc_i
->
inputs
.
empty
())
{
return
fc_i
->
inputs
[
0
];
}
}
return
nullptr
;
};
auto
var_before_is_fc_act_repeated_n_times
=
[
=
](
Node
*
x
,
int
repeated_times
,
const
std
::
string
&
act_type
=
"relu"
)
->
bool
{
for
(
int
i
=
0
;
i
<
repeated_times
;
++
i
)
{
// std::cout << "----" << i << std::endl;
if
(
!
var_before_is_fc_act
(
x
,
act_type
,
i
==
repeated_times
-
1
))
{
return
false
;
}
x
=
before_var_of_part
(
x
);
}
return
true
;
};
std
::
vector
<
PDNode
*>
fc_input_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_output_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_weight_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_bias_var
(
num_fc
);
std
::
vector
<
PDNode
*>
fc_ops
(
num_fc
);
std
::
vector
<
PDNode
*>
relu_ops
(
num_fc
);
for
(
int
i
=
0
;
i
<
num_fc
;
++
i
)
{
fc_input_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
if
(
i
==
0
&&
x
->
outputs
.
size
()
>
0
)
{
bool
ok
=
x
->
inputs
.
size
()
>
0
;
if
(
!
ok
)
{
return
false
;
}
int
idx
=
find_fc_idx
(
x
);
if
(
idx
==
0
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
);
}
else
{
x
=
next_var_of_part
(
x
,
idx
);
return
var_next_is_fc_act_repeated_n_times
(
x
,
std
::
max
(
1
,
num_fc
-
i
-
1
),
"relu"
);
}
}
else
{
bool
part1
=
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
size
()
>
0
;
if
(
x
->
Name
()
==
"fc_0.tmp_1"
&&
x
->
IsVar
()
&&
part1
)
{
// std::cout << "testes" << std::endl;
}
bool
part2
=
var_before_is_fc_act_repeated_n_times
(
x
,
i
,
"relu"
);
if
(
x
->
Name
()
==
"fc_0.tmp_1"
)
{
// std::cout << "========" << part1 << "," << part2 << std::endl;
}
return
part1
&&
part2
;
}
},
name_scope
+
"/fc_in_"
+
std
::
to_string
(
i
));
fc_weight_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
empty
()
&&
var_before_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
]
->
inputs
[
0
],
i
,
"relu"
)
&&
x
->
Name
()
==
x
->
outputs
[
0
]
->
Op
()
->
Input
(
"W"
)[
0
];
},
name_scope
+
"/fc_weight_"
+
std
::
to_string
(
i
));
fc_bias_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
empty
()
&&
var_before_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
]
->
inputs
[
0
],
i
,
"relu"
)
&&
x
->
Name
()
==
x
->
outputs
[
0
]
->
Op
()
->
Input
(
"Bias"
)[
0
];
},
name_scope
+
"/fc_bias_"
+
std
::
to_string
(
i
));
fc_output_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
bool
basic
=
x
&&
x
->
IsVar
()
&&
VarLinksFromOp
(
x
,
"fc"
)
&&
VarLinksToOp
(
x
,
"relu"
)
&&
x
->
inputs
.
size
()
==
1
&&
x
->
inputs
[
0
]
->
inputs
.
size
()
==
3
;
if
(
!
basic
)
{
return
false
;
}
x
=
x
->
inputs
[
0
]
->
inputs
[
0
];
if
(
i
==
0
&&
x
->
outputs
.
size
()
>
0
)
{
bool
ok
=
x
->
inputs
.
size
()
>
0
;
if
(
!
ok
)
{
return
false
;
}
int
idx
=
find_fc_idx
(
x
);
if
(
idx
==
0
)
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
);
}
else
{
x
=
next_var_of_part
(
x
,
idx
);
return
var_next_is_fc_act_repeated_n_times
(
x
,
std
::
max
(
1
,
num_fc
-
i
-
1
),
"relu"
);
}
}
else
{
return
var_next_is_fc_act_repeated_n_times
(
x
,
num_fc
-
i
,
"relu"
)
&&
x
->
inputs
.
size
()
>
0
&&
var_before_is_fc_act_repeated_n_times
(
x
,
i
,
"relu"
);
}
},
name_scope
+
"/fc_out_"
+
std
::
to_string
(
i
));
fc_ops
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
bool
basic
=
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"fc"
&&
x
->
inputs
.
size
()
==
3
&&
x
->
outputs
.
size
()
==
1
;
if
(
!
basic
)
{
return
false
;
}
auto
*
fc_out_var
=
x
->
outputs
[
0
];
return
fc_out_var
&&
fc_out_var
->
IsVar
()
&&
fc_out_var
->
outputs
.
size
()
==
1
&&
VarLinksToOp
(
fc_out_var
,
"relu"
)
&&
fc_out_var
->
outputs
[
0
]
->
outputs
.
size
()
==
1
&&
var_next_is_fc_act_repeated_n_times
(
fc_out_var
->
outputs
[
0
]
->
outputs
[
0
],
num_fc
-
i
-
1
,
"relu"
)
&&
var_before_is_fc_act_repeated_n_times
(
fc_out_var
->
outputs
[
0
]
->
outputs
[
0
],
i
+
1
,
"relu"
);
},
name_scope
+
"/fc_op_"
+
std
::
to_string
(
i
));
relu_ops
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"relu"
&&
x
->
inputs
.
size
()
==
1
&&
x
->
outputs
.
size
()
==
1
&&
x
->
inputs
[
0
]
->
IsVar
()
&&
VarLinksFromOp
(
x
->
inputs
[
0
],
"fc"
)
&&
x
->
outputs
[
0
]
->
IsVar
()
&&
var_next_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
],
num_fc
-
i
-
1
,
"relu"
)
&&
var_before_is_fc_act_repeated_n_times
(
x
->
outputs
[
0
],
i
+
1
,
"relu"
);
},
name_scope
+
"/act_op_"
+
std
::
to_string
(
i
));
fc_ops
[
i
]
->
LinksFrom
({
fc_input_var
[
i
],
fc_weight_var
[
i
],
fc_bias_var
[
i
]})
.
LinksTo
({
fc_output_var
[
i
]});
relu_ops
[
i
]
->
LinksFrom
({
fc_output_var
[
i
]});
}
auto
*
last_out_var
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
var_before_is_fc_act_repeated_n_times
(
x
,
num_fc
,
"relu"
);
},
name_scope
+
"/act_out"
);
for
(
int
i
=
0
;
i
<
num_fc
-
1
;
++
i
)
{
relu_ops
[
i
]
->
LinksTo
({
fc_input_var
[
i
+
1
]});
}
relu_ops
[
num_fc
-
1
]
->
LinksTo
({
last_out_var
});
return
last_out_var
;
}
static
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_fc
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildRepeatedFCReluPattern
(
pattern
,
name_scope
,
num_fc
);
auto
retrieve_node
=
[](
const
std
::
string
&
name
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
const
PDPattern
&
pat
)
->
Node
*
{
PADDLE_ENFORCE
(
subgraph
.
count
(
pat
.
RetrieveNode
(
name
)),
"pattern has no Node called %s"
,
name
.
c_str
());
Node
*
p
=
subgraph
.
at
(
pat
.
RetrieveNode
(
name
));
PADDLE_ENFORCE_NOT_NULL
(
p
,
"subgraph has no node %s"
,
name
.
c_str
());
return
p
;
};
int
fusion_count
{
0
};
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
LOG
(
INFO
)
<<
"handle Repeated FC Act fuse"
;
std
::
vector
<
Node
*>
weights_vars
(
num_fc
);
std
::
vector
<
Node
*>
bias_vars
(
num_fc
);
std
::
vector
<
Node
*>
relu_vars
(
num_fc
-
1
);
std
::
vector
<
std
::
string
>
weight_names
(
num_fc
);
std
::
vector
<
std
::
string
>
bias_names
(
num_fc
);
std
::
vector
<
std
::
string
>
relu_names
(
num_fc
-
1
);
auto
&
fused_pattern
=
gpd
.
pattern
();
for
(
int
i
=
0
;
i
<
num_fc
;
++
i
)
{
if
(
i
>=
1
)
{
relu_vars
[
i
-
1
]
=
retrieve_node
(
name_scope
+
"/fc_in_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
relu_names
[
i
-
1
]
=
relu_vars
[
i
-
1
]
->
Name
();
}
weights_vars
[
i
]
=
retrieve_node
(
name_scope
+
"/fc_weight_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
weight_names
[
i
]
=
weights_vars
[
i
]
->
Name
();
bias_vars
[
i
]
=
retrieve_node
(
name_scope
+
"/fc_bias_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
bias_names
[
i
]
=
bias_vars
[
i
]
->
Name
();
}
auto
*
input_var
=
retrieve_node
(
name_scope
+
"/fc_in_0"
,
subgraph
,
fused_pattern
);
auto
*
last_out_var
=
retrieve_node
(
name_scope
+
"/act_out"
,
subgraph
,
fused_pattern
);
// Create New OpDesc
OpDesc
op_desc
;
op_desc
.
SetType
(
"fusion_repeated_fc_relu"
);
op_desc
.
SetInput
(
"X"
,
{
input_var
->
Name
()});
op_desc
.
SetInput
(
"W"
,
weight_names
);
op_desc
.
SetInput
(
"Bias"
,
bias_names
);
op_desc
.
SetOutput
(
"ReluOut"
,
relu_names
);
op_desc
.
SetOutput
(
"Out"
,
{
last_out_var
->
Name
()});
auto
*
op
=
graph
->
CreateOpNode
(
&
op_desc
);
IR_NODE_LINK_TO
(
input_var
,
op
);
for
(
size_t
i
=
0
;
i
<
weights_vars
.
size
();
++
i
)
{
IR_NODE_LINK_TO
(
weights_vars
[
i
],
op
);
IR_NODE_LINK_TO
(
bias_vars
[
i
],
op
);
}
for
(
size_t
i
=
0
;
i
<
relu_vars
.
size
();
++
i
)
{
IR_NODE_LINK_TO
(
op
,
relu_vars
[
i
]);
}
IR_NODE_LINK_TO
(
op
,
last_out_var
);
std
::
unordered_set
<
const
Node
*>
marked_nodes
;
for
(
auto
&
item
:
subgraph
)
{
marked_nodes
.
insert
(
item
.
second
);
}
for
(
size_t
i
=
0
;
i
<
weights_vars
.
size
();
++
i
)
{
marked_nodes
.
erase
(
weights_vars
[
i
]);
marked_nodes
.
erase
(
bias_vars
[
i
]);
}
for
(
size_t
i
=
0
;
i
<
relu_vars
.
size
();
++
i
)
{
marked_nodes
.
erase
(
relu_vars
[
i
]);
}
marked_nodes
.
erase
(
input_var
);
marked_nodes
.
erase
(
last_out_var
);
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
++
fusion_count
;
};
gpd
(
graph
,
handler
);
return
fusion_count
;
}
std
::
unique_ptr
<
ir
::
Graph
>
RepeatedFCReluFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
int
fusion_count
=
0
;
for
(
int
i
=
MAX_NUM_FC
;
i
>
1
;
--
i
)
{
fusion_count
+=
BuildFusion
(
graph
.
get
(),
name_scope_
+
"/"
+
std
::
to_string
(
3
),
3
);
}
AddStatis
(
fusion_count
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
repeated_fc_relu_fuse_pass
,
paddle
::
framework
::
ir
::
RepeatedFCReluFusePass
);
paddle/fluid/framework/ir/repeated_fc_relu_fuse_pass.h
0 → 100644
浏览文件 @
a89296ac
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/**
* Fuse Repeated FC Relu
*/
class
RepeatedFCReluFusePass
:
public
FusePassBase
{
public:
virtual
~
RepeatedFCReluFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"repeated_fc_relu"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
浏览文件 @
a89296ac
...
...
@@ -129,7 +129,8 @@ PDNode* BuildSeqPoolConcatPattern(PDPattern* pattern,
return
concat_out_var
;
}
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_inputs
)
{
static
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_inputs
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildSeqPoolConcatPattern
(
pattern
,
name_scope
,
num_inputs
);
...
...
paddle/fluid/inference/api/paddle_pass_builder.h
浏览文件 @
a89296ac
...
...
@@ -98,6 +98,7 @@ class CpuPassStrategy : public PassStrategy {
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"repeated_fc_relu_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"is_test_pass"
,
//
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录