Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
a4d54b83
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a4d54b83
编写于
11月 01, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make GRU Operator adapt to the latest code
上级
9162629b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
39 addition
and
33 deletion
+39
-33
paddle/operators/gru_op.cc
paddle/operators/gru_op.cc
+36
-30
python/paddle/v2/framework/tests/test_gru_op.py
python/paddle/v2/framework/tests/test_gru_op.py
+3
-3
未找到文件。
paddle/operators/gru_op.cc
浏览文件 @
a4d54b83
...
...
@@ -43,14 +43,12 @@ class GRUOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
weight_dims
[
1
],
frame_size
*
3
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
auto
h0
=
Input
(
"H0"
);
if
(
h0
!=
framework
::
kEmptyVarName
)
{
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h0_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE_EQ
(
h0_dims
[
1
],
frame_size
,
"The width of H0 must be equal to frame_size."
);
}
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
...
...
@@ -74,42 +72,52 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
GRUOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(LoDTensor)
t
he first input is a LodTensor, which support "
"(LoDTensor)
T
he first input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
"total time steps in this mini-batch, D is the hidden size."
);
AddInput
(
"H0"
,
"(Tensor, optional)
t
he initial hidden state is an optional "
"(Tensor, optional)
T
he initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size."
);
"batch size, D is the hidden size."
)
.
AsDispensable
();
AddInput
(
"Weight"
,
"(Tensor)
Weight matrix with shape [hidden_size, hidden_size * 3].
"
"
The elements continuous in memory can be divided into two parts.
"
"
The first part are weights of the update gate and reset gate
"
"
with shape [hidden_size, hidden_size * 2], and the second part are
"
"
weights of output candidate with shape [hidden_size, hidden_size]
"
);
"(Tensor)
The learnable hidden-hidden weight matrix with shape
"
"
(D x 3D), where D is the hidden size. The elements continuous in
"
"
memory can be divided into two parts. The first part are weights of
"
"
the update gate and reset gate with shape (D x 2D), and the second
"
"
part are weights of output candidate with shape (D x D).
"
);
AddInput
(
"Bias"
,
"(Tensor) Bias vector with shape [1, hidden_size * 3] concating "
"bias of the update gate, reset gate and output candidate."
);
"(Tensor, optional) Bias vector with shape (1 x 3D) concating "
"bias of the update gate, reset gate and output candidate."
)
.
AsDispensable
();
AddOutput
(
"BatchGate"
,
"(LoDTensor) the update gata, reset gate and output candidate "
"lod tensor of GRU operator. "
"The shape and lod is the same with the `Input`."
)
"(LoDTensor) To compute with batches, sequence data will be "
"reorganized into several successive batches each containing "
"data from the same time step. The LoDTensor BatchGate contains "
"the update gate, reset gate and output candidate values "
"organized in batches. The LoD size is 2. The first LoD contains "
"the batch offsets and the second LoD contains the indexes in "
"the raw sequence data."
)
.
AsIntermediate
();
AddOutput
(
"BatchResetHiddenPrev"
,
"(LoDTensor) the reseted hidden state lod tensor of GRU operator. "
"The shape and lod is the same with the `Input`."
)
"(LoDTensor) The reseted hidden state LoDTensor organized in batches. "
"This LoDTensor is a matrix with shape (T X D) and has the same LoD "
"with `BatchGate`."
)
.
AsIntermediate
();
AddOutput
(
"BatchHidden"
,
"(LoDTensor) the reseted hidden state lod tensor of GRU operator. "
"The shape and lod is the same with the `Input`."
)
"(LoDTensor) The hidden state LoDTensor organized in batches. "
"This LoDTensor is a matrix with shape (T X D) and has the same LoD "
"with `BatchGate`."
)
.
AsIntermediate
();
AddOutput
(
"Hidden"
,
"(LoDTensor) the hidden state lod tensor of GRU operator. "
"The shape and lod is the same with the `Input`."
);
AddOutput
(
"Hidden"
,
"(LoDTensor) the hidden state LoDTensor organized in sequences. "
"This LoDTensor is a matrix with shape (T X D) and has the same LoD "
"with `BatchGate`."
);
AddAttr
<
std
::
string
>
(
"activation"
,
"(string, default tanh) "
"The activation type used for output candidate {h}_t."
)
...
...
@@ -124,14 +132,14 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
"whether to compute reversed GRU."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
GRUOp implements part calculations of the GRU
unit
as following:
GRUOp implements part calculations of the GRU as following:
\f[
update \ gate: u_t = actGate(xu_t + W_u * hidden_prev + bias_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * hidden_prev + bias_r) \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, hidden_prev) + bias_c) \\
output: h_t = dot((1-u_t), hidden_prev) + dot(u_t, {h}_t)
\f]
The rest of GRU
unit
can be completed by using FCOp's output as the input of GRUOp.
The rest of GRU can be completed by using FCOp's output as the input of GRUOp.
)DOC"
);
}
};
...
...
@@ -170,8 +178,7 @@ class GRUGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
weight_width
,
frame_size
*
3
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
auto
h0
=
Input
(
"H0"
);
if
(
h0
!=
framework
::
kEmptyVarName
)
{
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h0_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE_EQ
(
h0_dims
[
1
],
frame_size
,
"The width of H0 must be equal to frame_size."
);
...
...
@@ -179,8 +186,7 @@ class GRUGradOp : public framework::OperatorWithKernel {
if
(
ctx
->
HasOutput
(
h0_grad_name
))
ctx
->
SetOutputDim
(
h0_grad_name
,
h0_dims
);
}
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
...
...
python/paddle/v2/framework/tests/test_gru_op.py
浏览文件 @
a4d54b83
...
...
@@ -62,7 +62,7 @@ class TestGRUOp(OpTest):
return
idx_in_seq_list
def
gru_step
(
self
,
x
,
h_p
,
w
,
b
):
print
x
.
shape
,
h_p
.
shape
,
w
.
shape
,
b
.
shape
#
print x.shape, h_p.shape, w.shape, b.shape
batch_size
=
x
.
shape
[
0
]
frame_size
=
w
.
shape
[
0
]
g
=
x
+
np
.
tile
(
b
,
(
batch_size
,
1
))
...
...
@@ -96,7 +96,7 @@ class TestGRUOp(OpTest):
num_batch
=
len
(
idx_in_seq_list
)
end_idx
=
0
for
batch_idx
in
range
(
num_batch
):
print
idx_in_seq_list
[
batch_idx
]
#
print idx_in_seq_list[batch_idx]
x
=
input
[
idx_in_seq_list
[
batch_idx
]]
g
,
r_h_p
,
h
=
self
.
gru_step
(
x
,
h_p
,
w
,
b
)
if
batch_idx
<
(
num_batch
-
1
):
...
...
@@ -112,7 +112,7 @@ class TestGRUOp(OpTest):
def
set_data
(
self
):
lod
=
[[
0
,
2
,
6
,
9
]]
#[[0, 1, 2, 3]]
self
.
idx_in_seq_list
=
self
.
seq_to_batch
(
lod
,
self
.
is_reverse
)
print
self
.
idx_in_seq_list
#
print self.idx_in_seq_list
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
input
=
np
.
random
.
rand
(
batch_size
,
frame_size
*
3
).
astype
(
'float64'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录