提交 a31ff363 编写于 作者: Y Yang Yang

prune pass dummy test

上级 b504a234
......@@ -49,5 +49,8 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope frame
# cc_test(executor_test SRCS executor_test.cc DEPS executor)
#endif()
cc_library(prune SRCS prune.cc)
cc_test(prune_test SRCS prune_test.cc DEPS prune recurrent_op device_context)
cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor)
cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place)
......@@ -55,6 +55,7 @@ message OpDesc {
repeated Var inputs = 1;
repeated Var outputs = 2;
repeated Attr attrs = 4;
required bool is_target = 5 [ default = false ];
};
// OpProto describes a C++ framework::OperatorBase derived class.
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/prune.h"
#include <algorithm>
#include <set>
#include <string>
#include <vector>
#include <glog/logging.h>
namespace paddle {
namespace framework {
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";
bool HasDependentVar(const OpDesc& op_desc,
const std::set<std::string>& dependent_vars) {
for (auto& var : op_desc.outputs()) {
for (auto& argu : var.arguments()) {
if (dependent_vars.count(argu) != 0) {
return true;
}
}
}
return false;
}
void Prune(const ProgramDesc& input, ProgramDesc& output, int id) {
// TODO(tonyyang-svail):
// - will change to use multiple blocks for RNN op and Cond Op
auto& block = input.blocks(0);
auto& ops = block.ops();
bool expect_feed = true;
for (auto& op_desc : ops) {
PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed,
"All FeedOps are at the beginning of the ProgramDesc");
expect_feed = (op_desc.type() == kFeedOpType);
}
bool expect_fetch = true;
for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
auto& op_desc = *op_iter;
PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch,
"All FetchOps must at the end of the ProgramDesc");
expect_fetch = (op_desc.type() == kFetchOpType);
}
std::set<std::string> dependent_vars;
std::vector<bool> should_run;
for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
auto& op_desc = *op_iter;
if (op_desc.is_target() || HasDependentVar(op_desc, dependent_vars)) {
// erase its output to the dependency graph
for (auto& var : op_desc.outputs()) {
for (auto& argu : var.arguments()) {
dependent_vars.erase(argu);
}
}
// insert its input to the dependency graph
for (auto& var : op_desc.inputs()) {
for (auto& argu : var.arguments()) {
dependent_vars.insert(argu);
}
}
should_run.push_back(true);
} else {
should_run.push_back(false);
}
}
// since we are traversing the ProgramDesc in reverse order
// we reverse the should_run vector
std::reverse(should_run.begin(), should_run.end());
output = input;
auto* op_field = output.mutable_blocks(id)->mutable_ops();
op_field->Clear();
for (size_t i = 0; i < should_run.size(); ++i) {
if (should_run[i]) {
*op_field->Add() = input.blocks(id).ops(i);
}
}
// return should_run;
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/framework.pb.h"
#include "paddle/platform/enforce.h"
namespace paddle {
namespace framework {
void Prune(const ProgramDesc& input, ProgramDesc& output, int id);
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/prune.h"
#include <gtest/gtest.h>
#include "paddle/framework/attribute.h"
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/program_desc.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace framework {
using DeviceContext = platform::DeviceContext;
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input X of Add");
AddInput("b", "Bias of Add");
AddOutput("Out", "Out of Add");
AddComment("Add Op");
}
};
class RowWiseAddGradMaker : public SingleGradOpDescMaker {
public:
using SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<OpDescBind> Apply() const override {
auto grad_op = new OpDescBind();
grad_op->SetInput(GradVarName("Out"), OutputGrad("Out"));
grad_op->SetOutput(GradVarName("X"), InputGrad("X"));
grad_op->SetOutput(GradVarName("b"), InputGrad("b"));
grad_op->SetType("rowwise_add_grad");
return std::unique_ptr<OpDescBind>(grad_op);
}
};
class MulOpMaker : public OpProtoAndCheckerMaker {
public:
MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "A");
AddInput("Y", "B");
AddOutput("Out", "Out");
AddAttr<int>("x_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
AddAttr<int>("y_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
AddComment("Mul");
}
};
class SigmoidOpMaker : public OpProtoAndCheckerMaker {
public:
SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "X");
AddOutput("Out", "Y");
AddComment("Sigmoid");
}
};
class NoGradOpMaker : public OpProtoAndCheckerMaker {
public:
NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "X input");
AddOutput("Out", "Y output");
AddComment("NoGradOp, same input output. no Grad");
}
};
class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
public:
ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("x", "x");
AddOutput("y", "y");
AddOutput("z", "z");
AddComment("");
}
};
class FillZeroOpMaker : public OpProtoAndCheckerMaker {
public:
FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "x");
AddOutput("Y", "out");
AddComment("");
}
};
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
AddOutput("Out", "the output tensor of sum operator.");
AddComment("");
}
};
class MultInOutOpMaker : public OpProtoAndCheckerMaker {
public:
MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "x");
AddInput("H", "h");
AddOutput("Y", "y");
AddOutput("Z", "z");
AddComment("");
}
};
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
namespace ops = paddle::operators;
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker,
f::RowWiseAddGradMaker);
REGISTER_OPERATOR(rowwise_add_grad, f::NOP);
REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP);
REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP);
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker);
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker);
REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP);
REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad,
f::NOP);
REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP);
void AddOp(const std::string &type, const f::VariableNameMap &inputs,
const f::VariableNameMap &outputs, f::AttributeMap attrs,
paddle::framework::BlockDescBind *block) {
// insert output
for (auto kv : outputs) {
for (auto v : kv.second) {
auto var = block->NewVar(v);
var->SetDataType(paddle::framework::DataType::FP32);
}
}
// insert op
auto op = block->AppendOp();
op->SetType(type);
for (auto &kv : inputs) {
op->SetInput(kv.first, kv.second);
}
for (auto &kv : outputs) {
op->SetOutput(kv.first, kv.second);
}
op->SetAttrMap(attrs);
}
f::ProgramDesc *GetNewProgramDesc() {
auto *program_desc = new f::ProgramDesc();
auto *root_block = program_desc->add_blocks();
root_block->set_idx(0);
root_block->set_parent_idx(-1);
return program_desc;
}
TEST(Prune, one_operator) {
f::ProgramDesc *program_desc = GetNewProgramDesc();
f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
f::BlockDescBind *block = program.Block(0);
AddOp("mul", {{"X", {"a"}}, {"Y", {"w1"}}}, {{"Out", {"b"}}}, {}, block);
f::ProgramDesc *pdesc = program.Proto();
f::ProgramDesc pruned;
Prune(*pdesc, pruned, 0);
PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 0);
pdesc->mutable_blocks(0)->mutable_ops(0)->set_is_target(true);
Prune(*pdesc, pruned, 0);
PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 1);
}
TEST(Prune, simple_optimize) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册