提交 a02ce58f 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into revert_vlog

test=develop
......@@ -214,6 +214,7 @@ if (NOT WIN32)
# there is no official support of warpctc, nccl, cupti in windows
include(external/warpctc) # download, build, install warpctc
include(cupti)
include(external/gzstream)
endif (NOT WIN32)
if(WITH_DISTRIBUTE)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
IF(MOBILE_INFERENCE)
return()
ENDIF()
include (ExternalProject)
# NOTE: gzstream is needed when linking with ctr reader.
SET(GZSTREAM_SOURCES_DIR ${THIRD_PARTY_PATH}/gzstream)
SET(GZSTREAM_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gzstream)
SET(GZSTREAM_INCLUDE_DIR "${GZSTREAM_INSTALL_DIR}/include/" CACHE PATH "gzstream include directory." FORCE)
ExternalProject_Add(
extern_gzstream
GIT_REPOSITORY "https://github.com/jacquesqiao/gzstream.git"
GIT_TAG ""
PREFIX ${GZSTREAM_SOURCES_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_IN_SOURCE 1
BUILD_COMMAND make -j8
INSTALL_COMMAND mkdir -p ${GZSTREAM_INSTALL_DIR}/lib/ && mkdir -p ${GZSTREAM_INSTALL_DIR}/include/
&& cp ${GZSTREAM_SOURCES_DIR}/src/extern_gzstream/libgzstream.a ${GZSTREAM_INSTALL_DIR}/lib
&& cp -r ${GZSTREAM_SOURCES_DIR}/src/extern_gzstream/gzstream.h ${GZSTREAM_INSTALL_DIR}/include
)
ADD_LIBRARY(gzstream STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET gzstream PROPERTY IMPORTED_LOCATION
"${GZSTREAM_INSTALL_DIR}/lib/libgzstream.a")
include_directories(${GZSTREAM_INCLUDE_DIR})
ADD_DEPENDENCIES(gzstream extern_gzstream zlib)
......@@ -186,8 +186,7 @@ set(module "inference")
copy(inference_lib DEPS ${inference_deps}
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
${src_dir}/${module}/api/paddle_*.h
${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
)
set(module "platform")
......
......@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
......
......@@ -39,11 +39,12 @@ if (WITH_GPU)
endif()
cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass)
cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass)
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass)
if (WITH_GPU)
list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass)
endif()
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
namespace details {
static constexpr char kAllOpDescs[] = "all_op_descs";
VarHandle* GetValidInput(const OpHandleBase* a) {
for (auto p : a->Inputs()) {
VarHandle* b = dynamic_cast<VarHandle*>(p);
if (b) {
return b;
}
}
return nullptr;
}
std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto graph_ops = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
// get vars order
int order = 0;
std::unordered_map<std::string, int> vars;
// TODO(gongwb): use graph topology sort to find the order of operators.
// Note that must assert topology sort is stable
auto& ops = Get<const std::vector<OpDesc*>>(kAllOpDescs);
for (auto* op_desc : ops) {
auto outputs = op_desc->Outputs();
for (auto& o_it : outputs) {
for (auto& v : o_it.second) { // values
vars[v] = order;
}
}
order++;
}
std::vector<OpHandleBase*> dist_ops;
// get allreduce ops.
for (auto& op : graph_ops) {
// FIXME(gongwb):add broad cast.
if (op->Name() == "all_reduce" || op->Name() == "reduce") {
dist_ops.push_back(op);
}
}
VLOG(10) << "dist_ops size:" << dist_ops.size() << std::endl;
std::sort(dist_ops.begin(), dist_ops.end(), [&](OpHandleBase* op1,
OpHandleBase* op2) {
VarHandle* i0 = dynamic_cast<VarHandle*>(GetValidInput(op1));
VarHandle* i1 = dynamic_cast<VarHandle*>(GetValidInput(op2));
PADDLE_ENFORCE(i0 != nullptr && i1 != nullptr, "%s convert to %s error",
op1->DebugString(), op2->DebugString());
auto l_it = vars.find(i0->name_);
auto r_it = vars.find(i1->name_);
if (l_it->second < r_it->second) return true;
if (l_it->second == r_it->second) {
return i0->name_ < i1->name_;
}
return false;
});
// add dependency.
auto& sorted_ops = dist_ops;
for (size_t i = 1; i < sorted_ops.size(); ++i) {
auto* dep_var = new DummyVarHandle(graph->CreateControlDepVar());
auto* pre_op = sorted_ops[i - 1];
auto* op = sorted_ops[i];
pre_op->AddOutput(dep_var);
op->AddInput(dep_var);
graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
VLOG(10) << "add all_reduce sequential dependencies between " << pre_op
<< " and " << op;
VLOG(10) << "pre_op:" << pre_op->DebugString()
<< ", op:" << op->DebugString();
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(all_reduce_deps_pass,
paddle::framework::details::AllReduceDepsPass)
.RequirePassAttr(paddle::framework::details::kAllOpDescs);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
// TODO(gongwb): overlap allreduce with backward computation.
class AllReduceDepsPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
......@@ -24,6 +25,10 @@ namespace paddle {
namespace framework {
namespace details {
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
return (!strategy.enable_sequential_execution_ && strategy.num_trainers_ > 1);
}
class ParallelExecutorPassBuilder : public ir::PassBuilder {
public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
......@@ -70,6 +75,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor.
AppendPass("multi_devices_check_pass");
if (SeqOnlyAllReduceOps(strategy)) {
AppendPass("all_reduce_deps_pass");
}
if (strategy_.remove_unnecessary_lock_) {
AppendPass("modify_op_lock_and_record_event_pass");
}
......@@ -124,6 +133,17 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif
} else if (pass->Type() == "sequential_execution_pass") {
VLOG(1) << "set enable_sequential_execution:"
<< enable_sequential_execution_;
pass->Erase(kAllOpDescs);
pass->Set<const std::vector<OpDesc *>>(
kAllOpDescs,
new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
} else if (pass->Type() == "all_reduce_deps_pass") {
VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
<< ", num_trainers:" << num_trainers_;
pass->Erase(kAllOpDescs);
pass->Set<const std::vector<OpDesc *>>(
kAllOpDescs,
......@@ -144,4 +164,5 @@ USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
USE_PASS(sequential_execution_pass);
USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass);
......@@ -73,6 +73,7 @@ struct BuildStrategy {
bool fuse_broadcast_op_{false};
int num_trainers_{1};
bool remove_unnecessary_lock_{false};
// NOTE:
......
......@@ -71,7 +71,7 @@ class OperatorBase;
class ExecutionContext;
/**
* OperatorBase has the basic element that Net will call to do computation.
* OperatorBase has the basic elements that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
* should always construct a proto message OpDesc and call
* OpRegistry::CreateOp(op_desc) to get an Operator instance.
......
......@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -54,7 +54,7 @@ class ParallelExecutorPrivate {
Scope *global_scope_; // not owned
std::unique_ptr<details::SSAGraphExecutor> executor_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
bool own_local_scope_;
......@@ -104,7 +104,7 @@ ParallelExecutor::ParallelExecutor(
if (member_->use_cuda_) {
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
ncclUniqueId *nccl_id = nullptr;
if (nccl_id_var != nullptr) {
......@@ -124,7 +124,7 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
main_program, member_->places_, loss_var_name, params,
member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
......@@ -213,7 +213,7 @@ void ParallelExecutor::BCastParamsToDevices(
}
auto &dims = main_tensor.dims();
if (paddle::platform::is_gpu_place(main_tensor.place())) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::vector<void *> buffers;
size_t numel = main_tensor.numel();
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
......
......@@ -120,8 +120,22 @@ class SelectedRows {
*/
int64_t AutoGrownIndex(int64_t key, bool auto_grown, bool is_test = false);
void SyncIndex();
/*
* @brief Get the index of the key from id_to_index_ map.
*/
inline int64_t GetIndexFromId(int64_t key) {
auto iter = id_to_index_.find(key);
if (iter == id_to_index_.end()) {
return -1;
} else {
return iter->second;
}
}
void SyncIndex();
/*
* @brief Get complete Dims before
*/
DDim GetCompleteDims() const {
std::vector<int64_t> dims = vectorize(value_->dims());
dims[0] = height_;
......@@ -133,9 +147,10 @@ class SelectedRows {
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
Vector<int64_t> rows_;
std::unordered_map<int64_t, int64_t> id_to_index_;
std::unordered_map<int64_t, int64_t>
id_to_index_; // should not be used when rows_ has duplicate member
std::unique_ptr<Tensor> value_{nullptr};
int64_t height_;
int64_t height_; // height indicates the underline tensor's height
std::unique_ptr<RWLock> rwlock_{nullptr};
};
......
......@@ -17,28 +17,16 @@
namespace paddle {
namespace framework {
// Holds all the transfer scope across the process.
std::unordered_map<size_t, Scope*>& global_transfer_data_cache() {
typedef std::unordered_map<size_t, Scope*> map_t;
thread_local std::unique_ptr<map_t> x(new map_t);
thread_local auto* x = new std::unordered_map<size_t, Scope*>;
return *x;
}
// Holds all the transfer scope for this thread.
std::unordered_set<Scope*>& global_transfer_scope_cache() {
typedef std::unordered_set<Scope*> set_t;
thread_local std::unique_ptr<set_t> x(new set_t);
thread_local auto* x = new std::unordered_set<Scope*>;
return *x;
}
// Try to create a transfer scope. If one cached scope has match the
// requirement, just return that one.
// Inputs:
// @type0: the source kernel type.
// @type1: the target kernel type.
// @scope: the execution scope of this op.
// Returns: A scope used to hold the transfer data across the different kernel
// type.
Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
const Scope* scope) {
Scope* new_scope{nullptr};
......@@ -58,5 +46,27 @@ Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
return new_scope;
}
void RemoveKidsFromTransferScopeCache(Scope* scope) {
auto it = global_transfer_scope_cache().find(scope);
if (it != global_transfer_scope_cache().end()) {
global_transfer_scope_cache().erase(it);
}
for (auto* s : scope->kids()) {
auto it = global_transfer_scope_cache().find(s);
if (it != global_transfer_scope_cache().end()) {
global_transfer_scope_cache().erase(it);
}
}
// remove global transfer data cache
auto& cache = global_transfer_data_cache();
for (auto it = cache.begin(); it != cache.end();) {
if (it->second == scope)
it = cache.erase(it);
else
it++;
}
}
} // namespace framework
} // namespace paddle
......@@ -35,4 +35,5 @@ function(inference_analysis_test TARGET)
endif()
endfunction(inference_analysis_test)
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS reset_tensor_array paddle_inference_api)
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS reset_tensor_array paddle_inference_api)
......@@ -76,7 +76,8 @@ void TestWord2vecPrediction(const std::string& model_path) {
0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min((size_t)5UL, num_elements); i++) {
for (size_t i = 0; i < std::min(static_cast<size_t>(5UL), num_elements);
i++) {
LOG(INFO) << "data: "
<< static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
......
......@@ -284,6 +284,7 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework::GetFetchVariable(*scope, "fetch", idx);
auto type = fetch.type();
auto output = &(outputs->at(i));
output->name = fetchs_[idx]->Input("X")[0];
if (type == typeid(float)) {
GetFetchOne<float>(fetch, output);
output->dtype = PaddleDType::FLOAT32;
......
......@@ -109,7 +109,7 @@ class AnalysisPredictor : public PaddlePredictor {
std::map<std::string, size_t> feed_names_;
std::vector<framework::OpDesc *> fetchs_;
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, so cache them.
// concurrency problems, wrong results and memory leak, so cache them.
std::vector<framework::LoDTensor> feed_tensors_;
details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
......
......@@ -185,8 +185,12 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
<< inputs.size();
return false;
}
// Cache the inputs memory for better concurrency performance.
feed_tensors_.resize(inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
framework::LoDTensor input;
auto &input = feed_tensors_[i];
framework::DDim ddim = framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
......@@ -261,6 +265,7 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework::GetFetchVariable(*scope, "fetch", idx);
auto type = fetch.type();
auto output = &(outputs->at(i));
output->name = fetchs_[idx]->Input("X")[0];
if (type == typeid(float)) {
GetFetchOne<float>(fetch, output);
output->dtype = PaddleDType::FLOAT32;
......
......@@ -69,6 +69,9 @@ class NativePaddlePredictor : public PaddlePredictor {
std::vector<framework::OpDesc *> feeds_;
std::map<std::string, size_t> feed_names_;
std::vector<framework::OpDesc *> fetchs_;
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, wrong results and memory leak, so cache them.
std::vector<framework::LoDTensor> feed_tensors_;
// Do not use unique_ptr, use parent scope to delete
framework::Scope *sub_scope_{nullptr};
details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
......
......@@ -99,9 +99,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
LockedAllocator locked_allocator(std::move(best_fit_allocator));
auto th_main = [&] {
std::random_device dev;
std::default_random_engine engine(dev());
auto th_main = [&](std::random_device::result_type seed) {
std::default_random_engine engine(seed);
std::uniform_int_distribution<size_t> dist(1U, 1024U);
for (size_t i = 0; i < 128; ++i) {
......@@ -125,7 +124,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
{
std::vector<std::thread> threads;
for (size_t i = 0; i < 1024; ++i) {
threads.emplace_back(th_main);
std::random_device dev;
threads.emplace_back(th_main, dev());
}
for (auto& th : threads) {
th.join();
......
......@@ -41,9 +41,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
LockedAllocator concurrent_allocator(
std::unique_ptr<Allocator>(new BestFitAllocator(cuda_allocation.get())));
auto th_main = [&] {
std::random_device dev;
std::default_random_engine engine(dev());
auto th_main = [&](std::random_device::result_type seed) {
std::default_random_engine engine(seed);
std::uniform_int_distribution<size_t> dist(1U, 1024U);
platform::CUDAPlace gpu(0);
platform::CUDADeviceContext dev_ctx(gpu);
......@@ -75,7 +74,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
{
std::vector<std::thread> threads;
for (size_t i = 0; i < 1024; ++i) {
threads.emplace_back(th_main);
std::random_device dev;
threads.emplace_back(th_main, dev());
}
for (auto& th : threads) {
th.join();
......
......@@ -86,7 +86,11 @@ void CPUAllocator::Free(void* p, size_t size, size_t index) {
munlock(p, size);
#endif
}
#ifdef _WIN32
_aligned_free(p);
#else
free(p);
#endif
}
bool CPUAllocator::UseGpu() const { return false; }
......
......@@ -149,6 +149,13 @@ $out = \max(x, 0)$
)DOC";
UNUSED constexpr char GeluDoc[] = R"DOC(
Gelu Activation Operator.
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$
)DOC";
UNUSED constexpr char TanhDoc[] = R"DOC(
Tanh Activation Operator.
......@@ -472,6 +479,7 @@ REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Gelu, GeluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
......@@ -489,6 +497,7 @@ REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sigmoid, sigmoid);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu, relu);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Gelu, gelu);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Exp, exp);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Tanh, tanh);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Ceil, ceil);
......@@ -525,6 +534,7 @@ namespace ops = paddle::operators;
__macro(Round, round); \
__macro(Log, log); \
__macro(Square, square); \
__macro(Gelu, gelu); \
__macro(BRelu, brelu); \
__macro(Pow, pow); \
__macro(STanh, stanh); \
......
......@@ -16,6 +16,11 @@ limitations under the License. */
#include <utility>
#include <vector>
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
......@@ -212,6 +217,31 @@ struct ReluGradFunctor : public BaseActivationFunctor<T> {
}
};
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
auto temp =
((x * static_cast<T>(M_SQRT1_2)).erf()).template cast<T>().eval();
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
}
};
template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
bool Inplace() const { return IsInplace("gelu"); }
template <typename Device, typename X, typename Out, typename dOut,
typename dX>
void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
auto temp = (static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
((-static_cast<T>(0.5) * x.square()).exp()))
.template cast<T>()
.eval();
dx.device(d) = dout * (out / x + temp);
}
};
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
......@@ -877,6 +907,7 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
__macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(gelu, GeluFunctor, GeluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
......
......@@ -70,7 +70,7 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
if (bias) {
auto bias_vec = EigenMatrix<T>::From(*bias);
Eigen::DSizes<int, 2> bcast(batch_size, 1);
output_mat.device(place) = bias_vec.broadcast(bcast) + output_mat;
output_mat.device(place) = bias_vec.broadcast(bcast).eval() + output_mat;
}
}
};
......@@ -99,13 +99,13 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
auto d_out_mat = EigenMatrix<T>::From(*d_out);
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
// Create the intermediate variable to caculate the Output(Y@Grad).
// Create the intermediate variable to calculate the Output(Y@Grad).
Tensor x_scale;
x_scale.mutable_data<T>(framework::make_ddim({batch_size, x_dim}),
ctx.GetPlace());
auto x_scale_mat = EigenMatrix<T>::From(x_scale);
// Create the intermediate variable to caculate the Output(X@Grad).
// Create the intermediate variable to calculate the Output(X@Grad).
Tensor y_scale;
y_scale.mutable_data<T>(framework::make_ddim({batch_size, y_dim}),
ctx.GetPlace());
......@@ -113,65 +113,64 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
math::SetConstant<DeviceContext, T> set_zero;
// Set Output(X@Grad) be zero.
if (d_x) {
d_x->mutable_data<T>(ctx.GetPlace());
set_zero(dev_ctx, d_x, static_cast<T>(0));
}
// Set Output(Y@Grad) be zero.
if (d_y) {
d_y->mutable_data<T>(ctx.GetPlace());
set_zero(dev_ctx, d_y, static_cast<T>(0));
}
if (d_weight) {
d_weight->mutable_data<T>(ctx.GetPlace());
}
auto blas = math::GetBlas<DeviceContext, T>(ctx);
// Caculate the Output(X@Grad) and Output(Y@Grad).
if (d_x || d_y) {
if (d_x || d_y || d_weight) {
Eigen::DSizes<int, 2> bcast_for_x(1, y_dim);
Eigen::DSizes<int, 2> bcast_for_y(1, x_dim);
Eigen::DSizes<int, 2> bcast_for_weight(1, x_dim);
for (int i = 0; i < out_dim; ++i) {
Tensor weight_i = weight->Slice(i, i + 1).Resize(
framework::make_ddim({x_dim, y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
if (d_x) {
y_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_x) *
.broadcast(bcast_for_x)
.eval() *
y_mat;
blas.GEMM(CblasNoTrans, CblasTrans, batch_size, x_dim, y_dim, 1,
y_scale.data<T>(), weight_i.data<T>(), 1, d_x->data<T>());
}
if (d_y) {
x_scale_mat.device(place) =
if (d_y || d_weight) {
auto output_vec_y =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_y) *
x_mat;
blas.GEMM(CblasNoTrans, CblasNoTrans, batch_size, y_dim, x_dim, 1,
x_scale.data<T>(), weight_i.data<T>(), 1, d_y->data<T>());
.broadcast(bcast_for_y)
.eval();
x_scale_mat.device(place) = output_vec_y * x_mat;
if (d_y) {
blas.GEMM(CblasNoTrans, CblasNoTrans, batch_size, y_dim, x_dim, 1,
x_scale.data<T>(), weight_i.data<T>(), 1, d_y->data<T>());
}
if (d_weight) {
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize(
framework::make_ddim({x_dim, y_dim}));
blas.GEMM(CblasTrans, CblasNoTrans, x_dim, y_dim, batch_size, 1,
x_scale.data<T>(), y->data<T>(), 0, d_weight_i.data<T>());
}
}
}
}
// Caculate the gradient of Input(Weight).
if (d_weight) {
d_weight->mutable_data<T>(ctx.GetPlace());
Eigen::DSizes<int, 2> bcast_for_weight(1, x_dim);
for (int i = 0; i < out_dim; ++i) {
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize(
framework::make_ddim({x_dim, y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
x_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_weight) *
x_mat;
blas.GEMM(CblasTrans, CblasNoTrans, x_dim, y_dim, batch_size, 1,
x_scale.data<T>(), y->data<T>(), 0, d_weight_i.data<T>());
}
}
// Caculate the gradient of Input(Bias).
// calculate the gradient of Input(Bias).
if (d_bias) {
d_bias->mutable_data<T>(ctx.GetPlace());
auto d_bias_mat = framework::EigenVector<T>::Flatten(*d_bias);
......
......@@ -120,6 +120,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
"Dimensions of Input(X) and Mask must be the same.");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
};
......
......@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
......
......@@ -19,36 +19,21 @@ limitations under the License. */
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "xbyak.h"
#include "xbyak_util.h"
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
namespace paddle {
namespace operators {
using framework::DataLayout;
using mkldnn::memory;
static mkldnn::memory::format StringToMKLDNNFormat(std::string& format) {
std::transform(format.begin(), format.end(), format.begin(), ::tolower);
if (!format.compare("nchw")) {
return memory::format::nchw;
} else if (!format.compare("nchw16c")) {
return memory::format::nChw16c;
} else if (!format.compare("nchw8c")) {
return memory::format::nChw8c;
} else if (!format.compare("nhwc")) {
return memory::format::nhwc;
} else {
return memory::format::any;
}
}
using platform::StringToMKLDNNFormat;
static void UpdateDataFormat(const framework::ExecutionContext& ctx,
framework::Tensor* tensor, const char* attribute) {
if (ctx.op().HasAttr(attribute)) {
auto format_as_string = ctx.Attr<std::string>(attribute);
auto format = StringToMKLDNNFormat(format_as_string);
auto format = StringToMKLDNNFormat(&format_as_string);
if (format != memory::format::any) {
tensor->set_format(format);
}
......@@ -93,8 +78,8 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
auto y_dims_untrimmed = y->dims();
auto x_int_dims = paddle::framework::vectorize2int(x_dims);
UpdateDataFormat(ctx, (Tensor*)x, "x_data_format");
UpdateDataFormat(ctx, (Tensor*)y, "y_data_format");
UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
Xbyak::util::Cpu cpu;
const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
......@@ -156,10 +141,10 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
if (!(is_x_nchw || is_x_nc))
ReorderInput<T>((Tensor*)x, ctx.GetPlace(), mkldnn_engine,
ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
x->dims().size() == 4);
if (!(is_y_nchw || is_y_nc))
ReorderInput<T>((Tensor*)y, ctx.GetPlace(), mkldnn_engine,
ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
y->dims().size() == 4);
}
......
......@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
......@@ -70,13 +70,14 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
const int64_t batch_size = ctx->GetInputDim("X")[0];
std::vector<int64_t> output_shape({batch_size, 1});
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
ctx->ShareLoD("X", /*->*/ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.GetPlace());
}
};
......@@ -86,27 +87,40 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, required) The input tensor with shape [N, D], "
"(LoDTensor, required) The input tensor with shape [N, D], "
"where N is the size of mini-batch, and D is the feature size.");
AddInput("W",
"(Tensor, required), The parameters of hierarchical "
"(LoDTensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[num_classes - 1, D].");
"[K, D]. Which K is the num of non-leaf node in Path Tree");
AddInput("Label",
"(Tensor, required), The labels of training data. It's a"
"(LoDTensor, required), The labels of training data. It's a"
"tensor with shape [N, 1].");
AddInput("PTable",
"(LoDTensor, optional), The Path Table from root to current word"
"it should have shape like [N, L], L is the length of the Path")
.AsDispensable();
AddInput(
"PathCode",
"(LoDTensor, optional), The Code on each Node of the Path from root "
"to current word"
"it should have shape like [N, L], L is the length of the Path")
.AsDispensable();
AddInput("Bias",
"(Tensor, optional), The bias is a tensor with shape"
"[1, num_classes - 1].");
AddOutput("Out",
"(Tensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1].");
"(LoDTensor, optional), The bias is a tensor with shape or "
"[num_classes, 1]"
"[num_classes - 1, 1].")
.AsDispensable();
AddOutput(
"Out",
"(LoDTensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1].");
AddOutput("PreOut",
"(Tensor, required) A intermedia 2-D tensor with shape "
"(LoDTensor, required) A intermedia 2-D tensor with shape "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes.")
.AsIntermediate();
AddAttr<AttrType>("num_classes", "(int, required), The number of classes")
AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
.SetDefault(2);
AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
......@@ -115,6 +129,10 @@ belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model."
)DOC");
AddAttr<bool>("is_sparse",
"(boolean, default false) "
"Sparse update.")
.SetDefault(false);
}
};
......@@ -124,16 +142,21 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@Grad) should not be null");
PADDLE_ENFORCE(ctx->HasInput("PreOut"),
"Input(Preout) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("W")),
"Output(W@Grad should not be null.)");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")));
if (ctx->HasOutput(framework::GradVarName("Bias"))) {
ctx->SetOutputDim(framework::GradVarName("Bias"),
ctx->GetInputDim("Bias"));
"Output(W@Grad should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@Grad should not be null.");
if (!ctx->Attrs().Get<bool>("is_sparse")) {
if (ctx->HasOutput(framework::GradVarName("Bias"))) {
ctx->SetOutputDim(framework::GradVarName("Bias"),
ctx->GetInputDim("Bias"));
}
ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
}
ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
......@@ -141,11 +164,55 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.GetPlace());
}
};
class HierarchicalSigmoidGradOpGradVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto w_grad_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto bias_grad_var_name_vec =
op_desc.Output(framework::GradVarName("Bias"));
std::string bias_grad_var_name;
bool hasBias = false;
if (bias_grad_var_name_vec.size()) {
hasBias = true;
bias_grad_var_name =
op_desc.Output(framework::GradVarName("Bias")).front();
}
auto attr = op_desc.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
<< " is set to SelectedRows";
block->Var(w_grad_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
if (hasBias) {
VLOG(30) << "hierarchical_sigmoid_grad op "
<< framework::GradVarName("Bias") << " is set to SelectedRows";
block->Var(bias_grad_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
}
} else {
VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
<< " is set to LoDTensor";
block->Var(w_grad_var_name)
->SetType(framework::proto::VarType::LOD_TENSOR);
if (hasBias) {
VLOG(30) << "hierarchical_sigmoid_grad op "
<< framework::GradVarName("Bias") << " is set to LoDTensor";
block->Var(bias_grad_var_name)
->SetType(framework::proto::VarType::LOD_TENSOR);
}
}
block->Var(w_grad_var_name)->SetDataType(block->Var("W")->GetDataType());
}
};
} // namespace operators
} // namespace paddle
......@@ -153,7 +220,8 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR(hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
ops::HierarchicalSigmoidOpMaker<int>,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp);
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
ops::HierarchicalSigmoidGradOpGradVarTypeInference);
REGISTER_OP_CPU_KERNEL(
hierarchical_sigmoid,
ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
......
......@@ -14,12 +14,16 @@ limitations under the License. */
#pragma once
#include <iostream>
#include <set>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
namespace paddle {
namespace operators {
......@@ -28,20 +32,38 @@ template <typename T, int MajorType = Eigen::RowMajor,
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
using platform::Transform;
static std::vector<int64_t> PathToRows(const framework::LoDTensor& path) {
std::set<int64_t> rows;
for (int64_t i = 0; i < path.numel(); ++i) {
int64_t row = path.data<int64_t>()[i];
if (row < 0) {
continue;
}
rows.emplace(row);
}
return std::vector<int64_t>(rows.begin(), rows.end());
}
template <typename DeviceContext, typename T>
class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X");
auto* w = ctx.Input<framework::Tensor>("W");
auto* label = ctx.Input<framework::Tensor>("Label");
auto* bias = ctx.Input<framework::Tensor>("Bias");
auto* out = ctx.Output<framework::Tensor>("Out");
auto* pre_out = ctx.Output<framework::Tensor>("PreOut");
auto& in = detail::Ref(ctx.Input<framework::LoDTensor>("X"));
auto& w = detail::Ref(ctx.Input<framework::LoDTensor>("W"));
auto* path = ctx.Input<framework::LoDTensor>("PTable");
auto* code = ctx.Input<framework::LoDTensor>("PathCode");
auto& label = detail::Ref(ctx.Input<framework::LoDTensor>("Label"));
auto* bias = ctx.Input<framework::LoDTensor>("Bias");
auto* out = ctx.Output<framework::LoDTensor>("Out");
auto* pre_out = ctx.Output<framework::LoDTensor>("PreOut");
size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
int64_t code_length = math::FindLastSet(num_classes - 1);
int64_t batch_size = in->dims()[0];
framework::Tensor sum;
bool is_custom = false;
if (path) {
is_custom = true;
}
int64_t code_length =
path ? path->dims()[1] : math::FindLastSet(num_classes - 1);
int64_t batch_size = in.dims()[0];
framework::LoDTensor sum;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto* pre_out_data = pre_out->mutable_data<T>(
framework::make_ddim({batch_size, code_length}), ctx.GetPlace());
......@@ -52,7 +74,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
zero(dev_ctx, pre_out, static_cast<T>(0.0));
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
math::RowwiseSum<DeviceContext, T> row_sum;
math::MatrixBitCodeFunctor<T> bit_code(num_classes, label->data<int64_t>());
std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
if (!is_custom) {
bit_code.reset(new math::MatrixBitCodeFunctor<T>(num_classes,
label.data<int64_t>()));
} else {
bit_code.reset(new math::MatrixBitCodeFunctor<T>(*path, *code,
label.data<int64_t>()));
}
std::vector<int64_t> sum_dims({batch_size, 1UL});
sum.mutable_data<T>(framework::make_ddim(sum_dims), ctx.GetPlace());
......@@ -60,15 +90,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
out->mutable_data<T>(ctx.GetPlace());
auto out_mat = framework::EigenVector<T>::Flatten(*out);
if (bias) {
bit_code.Add(pre_out, *bias);
bit_code->Add(*bias, pre_out);
}
bit_code.Mul(pre_out, *w, *in);
bit_code->Mul(pre_out, w, in);
// clip to [-40, 40]
Transform<DeviceContext> trans;
trans(ctx.template device_context<DeviceContext>(), pre_out_data,
pre_out_data + pre_out->numel(), pre_out_data,
ClipFunctor<T>(static_cast<T>(-40.0), static_cast<T>(40.0)));
bit_code.Sum(*pre_out, out, static_cast<T>(-1));
bit_code->Sum(*pre_out, out, static_cast<T>(-1));
// use softrelu to calculate cross entropy
pre_out_mat.device(place) = (static_cast<T>(1.0) + pre_out_mat.exp()).log();
row_sum(dev_ctx, *pre_out, &sum);
......@@ -84,50 +114,103 @@ template <typename DeviceContext, typename T>
class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X");
auto* w = ctx.Input<framework::Tensor>("W");
auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* w_grad = ctx.Output<framework::Tensor>(framework::GradVarName("W"));
auto* bias_grad =
ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));
auto* label = ctx.Input<framework::Tensor>("Label");
auto* pre_out = ctx.Input<framework::Tensor>("PreOut");
auto* out_grad =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
framework::Tensor pre_out_grad;
pre_out_grad.mutable_data<T>(pre_out->dims(), ctx.GetPlace());
in_grad->mutable_data<T>(ctx.GetPlace());
w_grad->mutable_data<T>(ctx.GetPlace());
auto& in = detail::Ref(ctx.Input<framework::LoDTensor>("X"));
auto& w = detail::Ref(ctx.Input<framework::LoDTensor>("W"));
auto* path = ctx.Input<framework::LoDTensor>("PTable");
auto* code = ctx.Input<framework::LoDTensor>("PathCode");
auto* bias = ctx.Input<framework::LoDTensor>("Bias");
auto* in_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
bool is_sparse = ctx.Attr<bool>("is_sparse");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
math::SetConstant<DeviceContext, T> zero;
auto& label = detail::Ref(ctx.Input<framework::LoDTensor>("Label"));
auto& pre_out = detail::Ref(ctx.Input<framework::LoDTensor>("PreOut"));
auto& out_grad = detail::Ref(
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out")));
framework::LoDTensor pre_out_grad;
pre_out_grad.mutable_data<T>(pre_out.dims(), ctx.GetPlace());
in_grad->mutable_data<T>(ctx.GetPlace());
zero(dev_ctx, in_grad, static_cast<T>(0.0));
zero(dev_ctx, w_grad, static_cast<T>(0.0));
size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
math::MatrixBitCodeFunctor<T> bit_code(num_classes, label->data<int64_t>());
bool is_custom = false;
if (path) {
is_custom = true;
}
std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
if (!is_custom) {
bit_code.reset(new math::MatrixBitCodeFunctor<T>(num_classes,
label.data<int64_t>()));
} else {
bit_code.reset(new math::MatrixBitCodeFunctor<T>(*path, *code,
label.data<int64_t>()));
}
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto pre_out_mat = EigenMatrix<T>::From(*pre_out);
auto pre_out_mat = EigenMatrix<T>::From(pre_out);
auto pre_out_grad_mat = EigenMatrix<T>::From(pre_out_grad);
auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
auto out_grad_mat = EigenMatrix<T>::From(out_grad);
Eigen::array<int, 2> bcast{1, static_cast<int>(pre_out_grad.dims()[1])};
// softrelu derivative
pre_out_grad_mat.device(place) =
static_cast<T>(1.0) - static_cast<T>(1.0) / pre_out_mat.exp();
bit_code.Sub(&pre_out_grad); // the gradient of clip(w * x + b)
bit_code->Sub(&pre_out_grad); // the gradient of clip(w * x + b)
pre_out_grad_mat.device(place) =
pre_out_grad_mat * out_grad_mat.broadcast(bcast);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
if (bias_grad) {
bias_grad->mutable_data<T>(ctx.GetPlace());
zero(dev_ctx, bias_grad, static_cast<T>(0.0));
bit_code.AddGrad(pre_out_grad, bias_grad);
if (!is_sparse) {
auto* bias_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Bias"));
if (bias_grad) {
bias_grad->mutable_data<T>(ctx.GetPlace());
zero(dev_ctx, bias_grad, static_cast<T>(0.0));
bit_code->AddGrad(pre_out_grad, bias_grad);
}
auto* w_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("W"));
w_grad->mutable_data<T>(ctx.GetPlace());
zero(dev_ctx, w_grad, static_cast<T>(0.0));
bit_code->MulGradWeight(pre_out_grad, w_grad, in);
} else {
framework::Vector<int64_t> real_rows = PathToRows(*path);
auto* w_grad =
ctx.Output<framework::SelectedRows>(framework::GradVarName("W"));
w_grad->set_rows(real_rows);
// Build a map of id -> row_index to speed up finding the index of one id
w_grad->SyncIndex();
w_grad->set_height(w.dims()[0]);
auto* w_grad_value = w_grad->mutable_value();
framework::DDim temp_dim(w.dims());
set(temp_dim, 0, real_rows.size());
w_grad_value->mutable_data<T>(temp_dim, ctx.GetPlace());
zero(dev_ctx, w_grad_value, static_cast<T>(0.0));
auto* bias_grad =
ctx.Output<framework::SelectedRows>(framework::GradVarName("Bias"));
if (bias_grad) {
bias_grad->set_rows(real_rows);
// build ids -> rows index map
bias_grad->SyncIndex();
bias_grad->set_height(bias->dims()[0]);
auto* bias_grad_value = bias_grad->mutable_value();
std::vector<int64_t> dims = {static_cast<int64_t>(real_rows.size()),
bias->dims()[1]};
bias_grad_value->mutable_data<T>(framework::make_ddim(dims),
ctx.GetPlace());
zero(dev_ctx, bias_grad_value, static_cast<T>(0.0));
bit_code->AddGrad(pre_out_grad, bias_grad);
}
bit_code->MulGradWeight(pre_out_grad, w_grad, in);
}
bit_code.MulGradWeight(pre_out_grad, w_grad, *in);
bit_code.MulGradError(pre_out_grad, *w, in_grad);
bit_code->MulGradError(pre_out_grad, w, in_grad);
}
};
......
......@@ -76,11 +76,12 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<int>("out_h", "output height of interpolate op.");
AddAttr<int>("out_w", "output width of interpolate op.");
AddAttr<std::string>(
"interp_method",
"(string), interpolation method, can be \"bilinear\" for "
"bilinear interpolation and \"nearest\" for nearest "
"neighbor interpolation.");
AddAttr<std::string>("interp_method",
"(string, default \"bilinear\"), interpolation "
"method, can be \"bilinear\" for "
"bilinear interpolation and \"nearest\" for nearest "
"neighbor interpolation.")
.SetDefault("bilinear");
AddComment(R"DOC(
This operator samples input X to given output shape by using specified
interpolation method, the interpolation methods can be \"nearest\"
......@@ -132,11 +133,19 @@ class InterpolateOpGrad : public framework::OperatorWithKernel {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(interpolate, ops::InterpolateOp, ops::InterpolateOpMaker,
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(interpolate_grad, ops::InterpolateOpGrad);
REGISTER_OP_CPU_KERNEL(interpolate, ops::InterpolateKernel<float>,
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad);
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
ops::InterpolateKernel<double>,
ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
ops::InterpolateKernel<double>,
ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(interpolate_grad, ops::InterpolateGradKernel<float>,
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
ops::InterpolateGradKernel<double>);
......@@ -284,9 +284,15 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(interpolate, ops::InterpolateOpCUDAKernel<float>,
REGISTER_OP_CUDA_KERNEL(bilinear_interp, ops::InterpolateOpCUDAKernel<float>,
ops::InterpolateOpCUDAKernel<double>,
ops::InterpolateOpCUDAKernel<int>);
REGISTER_OP_CUDA_KERNEL(interpolate_grad,
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad,
ops::InterpolateGradOpCUDAKernel<float>,
ops::InterpolateGradOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(nearest_interp, ops::InterpolateOpCUDAKernel<float>,
ops::InterpolateOpCUDAKernel<double>,
ops::InterpolateOpCUDAKernel<int>);
REGISTER_OP_CUDA_KERNEL(nearest_interp_grad,
ops::InterpolateGradOpCUDAKernel<float>,
ops::InterpolateGradOpCUDAKernel<double>);
......@@ -19,16 +19,15 @@ namespace operators {
namespace math {
template <typename T>
void MatrixBitCodeFunctor<T>::Add(framework::Tensor* tmat,
const framework::Tensor& vec) {
SimpleCodeTable code_table(num_classes_);
void MatrixBitCodeFunctor<T>::Add(const framework::Tensor& vec,
framework::Tensor* tmat) {
size_t batch_size = tmat->dims()[0];
size_t width = tmat->dims()[1];
for (size_t i = 0; i < batch_size; ++i) {
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code.calc_index(j);
size_t index = code->calc_index(j);
tmat->data<T>()[i * width + j] += vec.data<T>()[index];
}
}
......@@ -37,31 +36,46 @@ void MatrixBitCodeFunctor<T>::Add(framework::Tensor* tmat,
template <typename T>
void MatrixBitCodeFunctor<T>::AddGrad(const framework::Tensor& tmat,
framework::Tensor* vec) {
SimpleCodeTable code_table(num_classes_);
size_t batch_size = tmat.dims()[0];
size_t width = tmat.dims()[1];
for (size_t i = 0; i < batch_size; ++i) {
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code.calc_index(j);
size_t index = code->calc_index(j);
vec->data<T>()[index] += tmat.data<T>()[i * width + j];
}
}
}
template <typename T>
void MatrixBitCodeFunctor<T>::AddGrad(const framework::Tensor& tmat,
framework::SelectedRows* vec) {
size_t batch_size = tmat.dims()[0];
size_t width = tmat.dims()[1];
for (size_t i = 0; i < batch_size; ++i) {
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code->calc_index(j);
int64_t row_index = vec->GetIndexFromId(static_cast<int64_t>(index));
vec->mutable_value()->data<T>()[row_index] +=
tmat.data<T>()[i * width + j];
}
}
}
template <typename T>
void MatrixBitCodeFunctor<T>::Sum(const framework::Tensor& tmat,
framework::Tensor* sum, T scale_sum) {
SimpleCodeTable code_table(num_classes_);
size_t num_samples = tmat.dims()[0];
size_t o_width = tmat.dims()[1];
for (size_t i = 0; i < num_samples; ++i) {
T sm = static_cast<T>(0.0);
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
if (code.calc_bit(j)) {
if (code->calc_bit(j)) {
// calc_bit starts from right most bit, while data in tmat[i] is in the
// reverse order.
sm += tmat.data<T>()[i * o_width + j];
......@@ -75,7 +89,6 @@ template <typename T>
void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
const framework::Tensor& weight,
const framework::Tensor& input) {
SimpleCodeTable code_table(num_classes_);
size_t num_samples = tmat->dims()[0];
size_t tmat_width = tmat->dims()[1];
size_t input_width = input.dims()[1];
......@@ -84,10 +97,10 @@ void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
auto weight_value = weight.data<T>();
auto input_value = input.data<T>();
for (size_t i = 0; i < num_samples; ++i) {
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code.calc_index(j);
size_t index = code->calc_index(j);
T sum = static_cast<T>(0.0);
for (size_t k = 0; k < input_width; ++k) {
sum += weight_value[weight_width * index + k] *
......@@ -102,7 +115,6 @@ template <typename T>
void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
framework::Tensor* weight,
const framework::Tensor& input) {
SimpleCodeTable code_table(num_classes_);
size_t num_samples = tmat.dims()[0];
size_t input_width = input.dims()[1];
size_t tmat_width = tmat.dims()[1];
......@@ -111,10 +123,10 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
auto weight_value = weight->data<T>();
auto input_value = input.data<T>();
for (size_t i = 0; i < num_samples; ++i) {
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code.calc_index(j);
size_t index = code->calc_index(j);
for (size_t k = 0; k < input_width; ++k) {
weight_value[weight_width * index + k] +=
......@@ -124,11 +136,35 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
}
}
template <typename T>
void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
framework::SelectedRows* weight,
const framework::Tensor& input) {
size_t num_samples = tmat.dims()[0];
size_t input_width = input.dims()[1];
size_t tmat_width = tmat.dims()[1];
size_t weight_width = weight->value().dims()[1];
auto tmat_value = tmat.data<T>();
auto weight_value = weight->mutable_value()->data<T>();
auto input_value = input.data<T>();
for (size_t i = 0; i < num_samples; ++i) {
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code->calc_index(j);
for (size_t k = 0; k < input_width; ++k) {
int64_t row_index = weight->GetIndexFromId(static_cast<int64_t>(index));
weight_value[row_index * weight_width + k] +=
tmat_value[i * tmat_width + j] * input_value[input_width * i + k];
}
}
}
}
template <typename T>
void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
const framework::Tensor& weight,
framework::Tensor* input) {
SimpleCodeTable code_table(num_classes_);
size_t num_samples = tmat.dims()[0];
size_t tmat_width = tmat.dims()[1];
size_t input_width = input->dims()[1];
......@@ -138,10 +174,10 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
auto input_value = input->data<T>();
for (size_t i = 0; i < num_samples; ++i) {
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
size_t index = code.calc_index(j);
size_t index = code->calc_index(j);
for (size_t k = 0; k < input_width; ++k) {
input_value[input_width * i + k] +=
......@@ -154,14 +190,13 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
template <typename T>
void MatrixBitCodeFunctor<T>::Sub(framework::Tensor* tmat) {
SimpleCodeTable code_table(num_classes_);
size_t num_samples = tmat->dims()[0];
size_t o_width = tmat->dims()[1];
for (size_t i = 0; i < num_samples; ++i) {
auto code = code_table(static_cast<size_t>(ids_[i]));
int code_length = code.get_length();
auto code = code_table_->get_code(i);
int code_length = code->get_length();
for (int j = 0; j < code_length; ++j) {
if (code.calc_bit(j)) {
if (code->calc_bit(j)) {
tmat->data<T>()[i * o_width + j] -= 1;
}
}
......
......@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
......@@ -92,9 +94,27 @@ inline int clz(const T& value) {
inline size_t FindLastSet(size_t x) { return sizeof(size_t) * 8 - clz(x); }
#endif // !_WIN32
// set a code interface to create multiple code
class Code {
public:
virtual ~Code() {}
virtual size_t calc_index(int bit) const = 0;
virtual bool calc_bit(int bit) const = 0;
virtual int get_length() const = 0;
};
// set a CodeTable interface to create multiple code table
class CodeTable {
public:
virtual std::unique_ptr<Code> get_code(int64_t code) const = 0;
virtual size_t size() const = 0;
virtual int get_max_code_length() const = 0;
virtual ~CodeTable() {}
};
struct SimpleCode {
SimpleCode(size_t code, size_t num_classes) : c_(code + num_classes) {}
class SimpleCode : public Code {
public:
SimpleCode(size_t code, size_t num_classes, const int64_t* ids)
: c_(static_cast<size_t>(ids[code]) + num_classes) {}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
......@@ -104,41 +124,121 @@ struct SimpleCode {
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
inline size_t calc_index(int bit) const { return (c_ >> (bit + 1)) - 1; }
inline bool calc_bit(int bit) const { return c_ & (1 << bit); }
inline int get_length() const { return FindLastSet(c_) - 1; }
size_t calc_index(int bit) const { return (c_ >> (bit + 1)) - 1; }
bool calc_bit(int bit) const { return c_ & (1 << bit); }
int get_length() const { return FindLastSet(c_) - 1; }
private:
size_t c_;
};
struct SimpleCodeTable {
explicit SimpleCodeTable(size_t num_classes) : num_classes_(num_classes) {}
SimpleCode operator()(size_t code) const {
return SimpleCode(code, num_classes_);
template <typename T>
class CustomCode : public Code {
public:
CustomCode(const framework::Tensor& ptable, const framework::Tensor& pcode,
const int64_t* ids, int index)
: ids_(ids), index_(index) {
ptable_ = ptable.Slice(index, index + 1);
pcode_ = pcode.Slice(index, index + 1);
}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
* prefixes.
* Weight index is the prefixes of encoding, thus leave out the right most
* bit in calc_index.
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
size_t calc_index(int bit) const { return ptable_.data<T>()[bit]; }
bool calc_bit(int bit) const { return pcode_.data<T>()[bit]; }
int get_length() const {
int length = 0;
for (int i = 0; i < static_cast<int>(ptable_.dims()[1]); i++) {
if (ptable_.data<T>()[i] >= 0) {
length++;
} else {
return length;
}
}
return length;
}
private:
framework::Tensor ptable_;
framework::Tensor pcode_;
const int64_t* ids_;
const int index_;
};
class SimpleCodeTable : public CodeTable {
public:
SimpleCodeTable(size_t num_classes, const int64_t* ids)
: num_classes_(num_classes), ids_(ids) {}
std::unique_ptr<Code> get_code(int64_t code) const {
std::unique_ptr<Code> coder(new SimpleCode(code, num_classes_, ids_));
return coder;
}
size_t size() const { return num_classes_; }
int get_max_code_length() const { return FindLastSet(num_classes_ - 1); }
private:
size_t num_classes_;
const int64_t* ids_;
};
template <typename T>
class CustomCodeTable : public CodeTable {
public:
CustomCodeTable(const framework::Tensor& ptable,
const framework::Tensor& pcode, const int64_t* ids)
: ptable_(ptable), pcode_(pcode), ids_(ids) {}
std::unique_ptr<Code> get_code(int64_t code) const {
std::unique_ptr<Code> coder(new CustomCode<T>(ptable_, pcode_, ids_, code));
return coder;
}
size_t size() const { return static_cast<size_t>(ptable_.dims()[1]); }
int get_max_code_length() const {
return static_cast<size_t>(ptable_.dims()[1]);
}
private:
const framework::Tensor& ptable_;
const framework::Tensor& pcode_;
const int64_t* ids_;
};
template <typename T>
class MatrixBitCodeFunctor {
public:
explicit MatrixBitCodeFunctor(size_t num_classes, const int64_t* ids)
: num_classes_(num_classes), ids_(ids) {}
MatrixBitCodeFunctor(size_t num_classes, const int64_t* ids)
: num_classes_(num_classes),
ids_(ids),
code_table_(new SimpleCodeTable(num_classes, ids)) {}
MatrixBitCodeFunctor(const framework::Tensor& ptable,
const framework::Tensor& pcode, const int64_t* ids)
: num_classes_(static_cast<size_t>(ptable.dims()[1])),
ids_(ids),
code_table_(new CustomCodeTable<int64_t>(ptable, pcode, ids)) {}
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
void Add(framework::Tensor* tmat, const framework::Tensor& vec);
void Add(const framework::Tensor& vec, framework::Tensor* tmat);
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void AddGrad(const framework::Tensor& tmat, framework::Tensor* vec);
/* For selected rows For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void AddGrad(const framework::Tensor& tmat, framework::SelectedRows* vec);
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
......@@ -159,6 +259,12 @@ class MatrixBitCodeFunctor {
*/
void MulGradWeight(const framework::Tensor& tmat, framework::Tensor* weight,
const framework::Tensor& input);
/* For SelectedRows Weight, For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
void MulGradWeight(const framework::Tensor& tmat,
framework::SelectedRows* weight,
const framework::Tensor& input);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
......@@ -167,6 +273,7 @@ class MatrixBitCodeFunctor {
size_t num_classes_;
const int64_t* ids_;
std::unique_ptr<CodeTable> code_table_;
};
} // namespace math
} // namespace operators
......
......@@ -60,75 +60,30 @@ float LogUniformSampler::Probability(int64_t value) const {
return (log((value + 2.0) / (value + 1.0))) / log_range_;
}
CustomSampler::CustomSampler(int64_t range, const float* probabilities,
CustomSampler::CustomSampler(int64_t range, const float *probabilities,
const int *alias, const float *alias_probabilities,
unsigned int seed)
: Sampler(range, seed) {
random_engine_ = std::make_shared<std::mt19937_64>(seed_);
random_engine_ = std::make_shared<std::mt19937>(seed_);
real_dist_ = std::make_shared<std::uniform_real_distribution<>>(0, 1);
int_dist_ = std::make_shared<std::uniform_int_distribution<>>(0, range);
alias_probs_ = std::make_shared<std::vector<float>>(range + 1);
alias_ = std::make_shared<std::vector<int64_t>>(range + 1);
probs_ = std::make_shared<std::vector<float>>(range + 1);
std::queue<std::pair<int64_t, float>> bigs;
std::queue<std::pair<int64_t, float>> littles;
for (int64_t i = 0; i <= range; ++i) {
(*probs_)[i] = probabilities[i];
float normal_prob = probabilities[i] * (range + 1);
if (normal_prob - 1.0 > 1e-4) {
bigs.emplace(i, normal_prob);
} else if (1.0 - normal_prob > 1e-4) {
littles.emplace(i, normal_prob);
} else {
(*alias_probs_)[i] = normal_prob;
(*alias_)[i] = -1;
}
}
while ((!littles.empty()) && (!bigs.empty())) {
auto big = bigs.front();
auto little = littles.front();
bigs.pop();
littles.pop();
(*alias_probs_)[little.first] = little.second;
(*alias_)[little.first] = big.first;
auto big_left = big.second - (1 - little.second);
if (big_left - 1.0 > 1e-4) {
bigs.emplace(big.first, big_left);
} else if (1.0 - big_left > 1e-4) {
littles.emplace(big.first, big_left);
} else {
(*alias_probs_)[big.first] = big_left;
(*alias_)[big.first] = -1;
}
}
if (!littles.empty()) { // littles.second is close to 1.0
auto little = littles.front();
(*alias_probs_)[little.first] = 1.0;
(*alias_)[little.first] = -1;
}
if (!bigs.empty()) { // bigs.second is close to 1.0
auto big = bigs.front();
(*alias_probs_)[big.first] = 1.0;
(*alias_)[big.first] = -1;
}
alias_probs_ = alias_probabilities;
probs_ = probabilities;
alias_ = alias;
}
int64_t CustomSampler::Sample() const {
auto index = (*int_dist_)(*random_engine_);
auto p = (*real_dist_)(*random_engine_);
if (p > (*alias_probs_)[index]) {
return (*alias_)[index];
if (p > alias_probs_[index]) {
return alias_[index];
} else {
return index;
}
}
float CustomSampler::Probability(int64_t value) const {
return (*probs_)[value];
}
float CustomSampler::Probability(int64_t value) const { return probs_[value]; }
} // namespace math
} // namespace operators
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstdint>
#include <memory>
#include <random>
......@@ -38,9 +39,12 @@ class Sampler {
seed_ = seed;
}
}
virtual ~Sampler();
// Sample a single value
virtual int64_t Sample() const = 0;
// The probability that a single call to Sample() returns the given value.
virtual float Probability(int64_t value) const = 0;
......@@ -99,6 +103,7 @@ class LogUniformSampler : public Sampler {
class CustomSampler : public Sampler {
public:
explicit CustomSampler(int64_t range, const float* probabilities,
const int* alias, const float* alias_probabilities,
unsigned int seed = 0UL);
~CustomSampler() override {}
......@@ -108,10 +113,10 @@ class CustomSampler : public Sampler {
float Probability(int64_t value) const override;
private:
std::shared_ptr<std::vector<float>> alias_probs_;
std::shared_ptr<std::vector<int64_t>> alias_;
std::shared_ptr<std::vector<float>> probs_;
std::shared_ptr<std::mt19937_64> random_engine_;
const float* alias_probs_;
const int* alias_;
const float* probs_;
std::shared_ptr<std::mt19937> random_engine_;
std::shared_ptr<std::uniform_real_distribution<>> real_dist_;
std::shared_ptr<std::uniform_int_distribution<>> int_dist_;
};
......
......@@ -16,13 +16,12 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace math {
#define FLT_MAX __FLT_MAX__
template <typename T>
struct MaxPoolFunctor {
HOSTDEVICE void operator()(const T* input, const size_t start,
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/nce_op.h"
#include <string>
#include <vector>
namespace paddle {
......@@ -25,7 +26,7 @@ class NCEOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"));
PADDLE_ENFORCE(ctx->HasInput("Label"));
PADDLE_ENFORCE(ctx->HasInput("Weight"));
......@@ -67,7 +68,7 @@ class NCEOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
platform::CPUPlace());
......@@ -101,11 +102,24 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
.AsDispensable();
AddInput(
"CustomDistribution",
"CustomDistProbs",
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled.")
.AsDispensable();
AddInput(
"CustomDistAlias",
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled.")
.AsDispensable();
AddInput(
"CustomDistAliasProbs",
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled.")
.AsDispensable();
AddOutput("Cost",
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
AddOutput("SampleLogits",
......@@ -124,21 +138,22 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
"kernel to compute grads."
"")
.AsIntermediate();
AddAttr<int>("num_total_classes",
"Total number of classes in all samples.");
AddAttr<int>("num_neg_samples",
"The number of negative classes. The default value is 10.")
.SetDefault(10);
AddAttr<int>("sampler",
"(int) Which sampler to be used to sample negative class."
"0: Uniform; 1: LogUniform; 2: CostumDist.")
.SetDefault(0);
AddAttr<int>("seed",
"(int) The seed used in sampler. If it is 0, "
"the sampler will generate a seed randomly.")
.SetDefault(0);
AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
.SetDefault(false);
AddAttr<std::vector<int>>("custom_neg_classes",
"This attribute only be used in unitest. Classes "
......@@ -156,11 +171,19 @@ By default this operator uses a uniform distribution for sampling.
}
};
class NCEOpGradDescMaker : public framework::DefaultGradOpDescMaker<true> {
using ::paddle::framework::DefaultGradOpDescMaker<
true>::DefaultGradOpDescMaker;
protected:
virtual std::string GradOpType() const { return "nce_grad"; }
};
class NCEOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"));
PADDLE_ENFORCE(ctx->HasInput("Weight"));
PADDLE_ENFORCE(ctx->HasInput("Cost"));
......@@ -190,20 +213,45 @@ class NCEOpGrad : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
platform::CPUPlace());
}
};
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto weight_grad = op_desc.Output(framework::GradVarName("Weight")).front();
auto bias_grad = op_desc.Output(framework::GradVarName("Bias")).front();
auto attr = op_desc.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(30) << "nce_op_grad op " << weight_grad << " and " << bias_grad
<< " is set to SelectedRows";
block->Var(weight_grad)
->SetType(framework::proto::VarType::SELECTED_ROWS);
block->Var(bias_grad)->SetType(framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(30) << "nce_op_grad op " << weight_grad << " and " << bias_grad
<< " is set to LoDTensor";
block->Var(weight_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
block->Var(bias_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
}
block->Var(weight_grad)->SetDataType(block->Var("Input")->GetDataType());
block->Var(bias_grad)->SetDataType(block->Var("Input")->GetDataType());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad);
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpGradDescMaker, ops::NCEOpMaker);
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference);
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
ops::NCEKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(nce_grad,
......
......@@ -16,26 +16,32 @@ limitations under the License. */
#include <math.h>
#include <random>
#include <set>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using Sampler = math::Sampler;
using DDim = framework::DDim;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename DeviceContext, typename T>
void PrepareSamples(const framework::ExecutionContext& context,
Sampler* sampler) {
void PrepareSamples(const framework::ExecutionContext &context,
Sampler *sampler) {
auto label = context.Input<Tensor>("Label");
const int64_t* label_data = label->data<int64_t>();
const int64_t *label_data = label->data<int64_t>();
auto label_dims = label->dims();
// int num_total_classes = context.Attr<int>("num_total_classes");
// for unitest
......@@ -44,7 +50,7 @@ void PrepareSamples(const framework::ExecutionContext& context,
auto sample_labels = context.Output<Tensor>("SampleLabels");
auto sample_labels_dims = sample_labels->dims();
int64_t* sample_labels_data =
int64_t *sample_labels_data =
sample_labels->mutable_data<int64_t>(context.GetPlace());
int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
......@@ -70,13 +76,13 @@ void PrepareSamples(const framework::ExecutionContext& context,
template <typename DeviceContext, typename T>
class NCEKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
void Compute(const framework::ExecutionContext &context) const override {
int sampler_type = context.Attr<int>("sampler");
int seed = context.Attr<int>("seed");
int num_total_classes = context.Attr<int>("num_total_classes");
int num_neg_samples = context.Attr<int>("num_neg_samples");
Sampler* sampler;
Sampler *sampler;
switch (sampler_type) {
case 0: {
sampler = new math::UniformSampler(num_total_classes - 1, seed);
......@@ -87,11 +93,19 @@ class NCEKernel : public framework::OpKernel<T> {
break;
}
case 2: {
auto custom_dist = context.Input<Tensor>("CustomDistribution");
const float* custom_dist_data = custom_dist->data<float>();
PADDLE_ENFORCE_EQ(custom_dist->numel(), num_total_classes);
sampler = new math::CustomSampler(num_total_classes - 1,
custom_dist_data, seed);
auto dist_probs = context.Input<Tensor>("CustomDistProbs");
auto dist_alias = context.Input<Tensor>("CustomDistAlias");
auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");
PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);
const float *probs_data = dist_probs->data<float>();
const int *alias_data = dist_alias->data<int>();
const float *alias_probs_data = dist_alias_probs->data<float>();
sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
alias_data, alias_probs_data, seed);
break;
}
default: { PADDLE_THROW("Unsupported SamplerType."); }
......@@ -99,17 +113,17 @@ class NCEKernel : public framework::OpKernel<T> {
PrepareSamples<DeviceContext, T>(context, sampler);
auto sample_labels = context.Output<Tensor>("SampleLabels");
const int64_t* sample_labels_data = sample_labels->data<int64_t>();
const int64_t *sample_labels_data = sample_labels->data<int64_t>();
auto sample_out = context.Output<Tensor>("SampleLogits");
T* sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
auto label = context.Input<Tensor>("Label");
auto sample_weight = context.Input<Tensor>("SampleWeight");
const T* sample_weight_data = nullptr;
const T *sample_weight_data = nullptr;
if (sample_weight != nullptr) {
sample_weight_data = sample_weight->data<T>();
}
auto out = context.Output<Tensor>("Cost");
T* out_data = out->mutable_data<T>(context.GetPlace());
T *out_data = out->mutable_data<T>(context.GetPlace());
int64_t num_true_class = 1;
if (label != nullptr) {
num_true_class = label->dims()[1];
......@@ -119,7 +133,7 @@ class NCEKernel : public framework::OpKernel<T> {
// forward bias
auto bias = context.Input<Tensor>("Bias");
if (bias != nullptr) {
const T* bias_data = bias->data<T>();
const T *bias_data = bias->data<T>();
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
sample_out_data[i] = bias_data[sample_labels_data[i]];
}
......@@ -158,16 +172,16 @@ class NCEKernel : public framework::OpKernel<T> {
template <typename DeviceContext, typename T>
class NCEGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
void Compute(const framework::ExecutionContext &context) const override {
auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
const T* d_out_data = d_out->data<T>();
const T *d_out_data = d_out->data<T>();
auto label = context.Input<Tensor>("Label");
auto sample_out = context.Input<Tensor>("SampleLogits");
const T* sample_out_data = sample_out->data<T>();
const T *sample_out_data = sample_out->data<T>();
auto sample_labels = context.Input<Tensor>("SampleLabels");
const int64_t* sample_labels_data = sample_labels->data<int64_t>();
const int64_t *sample_labels_data = sample_labels->data<int64_t>();
auto sample_weight = context.Input<Tensor>("SampleWeight");
const T* sample_weight_data = nullptr;
const T *sample_weight_data = nullptr;
if (sample_weight != nullptr) {
sample_weight_data = sample_weight->data<T>();
}
......@@ -180,7 +194,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
int sampler_type = context.Attr<int>("sampler");
int seed = context.Attr<int>("seed");
Sampler* sampler;
Sampler *sampler;
switch (sampler_type) {
case 0: {
sampler = new math::UniformSampler(num_total_classes - 1, seed);
......@@ -191,11 +205,19 @@ class NCEGradKernel : public framework::OpKernel<T> {
break;
}
case 2: {
auto custom_dist = context.Input<Tensor>("CustomDistribution");
const float* custom_dist_data = custom_dist->data<float>();
PADDLE_ENFORCE_EQ(custom_dist->numel(), num_total_classes);
sampler = new math::CustomSampler(num_total_classes - 1,
custom_dist_data, seed);
auto dist_probs = context.Input<Tensor>("CustomDistProbs");
auto dist_alias = context.Input<Tensor>("CustomDistAlias");
auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");
PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);
const float *probs_data = dist_probs->data<float>();
const int *alias_data = dist_alias->data<int>();
const float *alias_probs_data = dist_alias_probs->data<float>();
sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
alias_data, alias_probs_data, seed);
break;
}
default: { PADDLE_THROW("Unsupported SamplerType."); }
......@@ -203,7 +225,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
// T b = 1. / num_total_classes * num_neg_samples;
Tensor sample_grad; // tmp tensor
T* sample_grad_data =
T *sample_grad_data =
sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
// backward cost
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
......@@ -217,32 +239,105 @@ class NCEGradKernel : public framework::OpKernel<T> {
: w * (o * (1 - o) / (o + b));
sample_grad_data[i] *= d_out_data[sample_idx];
}
// get d_bias
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
if (d_bias != nullptr) {
T* d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
bool is_sparse = context.Attr<bool>("is_sparse");
if (!is_sparse) {
// get d_bias
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
if (d_bias != nullptr) {
T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
}
}
// get d_w
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
if (d_w != nullptr) {
auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_w_matrix.chip(sample_labels_data[i], 0) +=
x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
sample_grad_data[i];
}
}
} else {
std::vector<int64_t> labels;
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
labels.push_back(sample_labels_data[i]);
}
}
// get d_w
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
if (d_w != nullptr) {
auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
std::set<T> st(labels.begin(), labels.end());
labels.assign(st.begin(), st.end());
auto *bias_var = context.InputVar("Bias");
DDim bias_dim;
if (bias_var->IsType<LoDTensor>()) {
bias_dim = context.Input<LoDTensor>("Bias")->dims();
} else if (bias_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("Bias");
bias_dim = table_t->value().dims();
} else {
PADDLE_THROW(
"The parameter Bias of a NCE_OP "
"must be either LoDTensor or SelectedRows");
}
auto d_bias =
context.Output<SelectedRows>(framework::GradVarName("Bias"));
d_bias->set_rows(labels);
d_bias->set_height(bias_dim[0]);
d_bias->mutable_value()->Resize(
{static_cast<int64_t>(labels.size()), bias_dim[1]});
T *d_bias_data =
d_bias->mutable_value()->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + labels.size(), 0.0);
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[d_bias->Index(sample_labels_data[i])] +=
sample_grad_data[i];
}
auto *table_var = context.InputVar("Weight");
DDim table_dim;
if (table_var->IsType<LoDTensor>()) {
table_dim = context.Input<LoDTensor>("Weight")->dims();
} else if (table_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("Weight");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW(
"The parameter Weight of a NCE_OP "
"must be either LoDTensor or SelectedRows");
}
auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));
d_w->set_rows(labels);
d_w->set_height(table_dim[0]);
auto *d_table_value = d_w->mutable_value();
d_table_value->Resize(
{static_cast<int64_t>(labels.size()), table_dim[1]});
auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
d_w_matrix.chip(sample_labels_data[i], 0) +=
d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
sample_grad_data[i];
}
}
// get d_x
auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
if (d_x != nullptr) {
auto* d_x_data = d_x->mutable_data<T>(context.GetPlace());
auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
auto d_x_matrix = EigenMatrix<T>::From(*d_x);
auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
......@@ -251,6 +346,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
}
}
delete sampler;
}
};
......
......@@ -28,6 +28,12 @@ reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc)
reader_library(create_custom_reader_op SRCS create_custom_reader_op.cc)
reader_library(create_py_reader_op SRCS create_py_reader_op.cc)
if (NOT WIN32 AND NOT ON_INFER)
cc_library(ctr_reader SRCS ctr_reader.cc DEPS gzstream reader zlib)
cc_test(ctr_reader_test SRCS ctr_reader_test.cc DEPS ctr_reader)
reader_library(create_ctr_reader_op SRCS create_ctr_reader_op.cc DEPS ctr_reader)
endif ()
cc_test(reader_blocking_queue_test SRCS reader_blocking_queue_test.cc)
# Export local libraries to parent
# set(READER_LIBRARY ${LOCAL_READER_LIBS} PARENT_SCOPE)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace paddle {
namespace operators {
namespace reader {
class CreateCTRReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
if (out->Get() != nullptr) return;
const std::string& queue_name = Input("blocking_queue");
auto* queue_holder_var = scope.FindVar(queue_name);
PADDLE_ENFORCE_NOT_NULL(
queue_holder_var,
"No LoDTensorBlockingQueueHolder variable with name %s found",
queue_name);
auto* queue_holder =
queue_holder_var->template GetMutable<LoDTensorBlockingQueueHolder>();
int thread_num = Attr<int>("thread_num");
std::vector<std::string> slots = Attr<std::vector<std::string>>("slots");
int batch_size = Attr<int>("batch_size");
std::vector<std::string> file_list =
Attr<std::vector<std::string>>("file_list");
out->Reset(std::make_shared<CTRReader>(queue_holder->GetQueue(), batch_size,
thread_num, slots, file_list));
}
};
class CreateCTRReaderOpMaker : public FileReaderMakerBase {
protected:
void Apply() override {
AddInput("blocking_queue",
"Name of the `LoDTensorBlockingQueueHolder` variable");
AddAttr<int>("thread_num", "the thread num to read data");
AddAttr<int>("batch_size", "the batch size of read data");
AddAttr<std::vector<std::string>>("file_list",
"The list of files that need to read");
AddAttr<std::vector<std::string>>(
"slots", "the slots that should be extract from file");
AddComment(R"DOC(
Create CTRReader to support read ctr data with cpp.
)DOC");
}
};
} // namespace reader
} // namespace operators
} // namespace paddle
namespace reader = ::paddle::operators::reader;
REGISTER_FILE_READER_OPERATOR(create_ctr_reader, reader::CreateCTRReaderOp,
reader::CreateCTRReaderOpMaker);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include <gzstream.h>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <algorithm>
#include <random>
namespace paddle {
namespace operators {
namespace reader {
static inline void string_split(const std::string& s, const char delimiter,
std::vector<std::string>* output) {
size_t start = 0;
size_t end = s.find_first_of(delimiter);
while (end <= std::string::npos) {
output->emplace_back(s.substr(start, end - start));
if (end == std::string::npos) {
break;
}
start = end + 1;
end = s.find_first_of(delimiter, start);
}
}
static inline void parse_line(
const std::string& line,
const std::unordered_map<std::string, size_t>& slot_to_index,
int64_t* label,
std::unordered_map<std::string, std::vector<int64_t>>* slot_to_data) {
std::vector<std::string> ret;
string_split(line, ' ', &ret);
*label = std::stoi(ret[2]) > 0;
for (size_t i = 3; i < ret.size(); ++i) {
const std::string& item = ret[i];
std::vector<std::string> feasign_and_slot;
string_split(item, ':', &feasign_and_slot);
if (feasign_and_slot.size() == 2 &&
slot_to_index.find(feasign_and_slot[1]) != slot_to_index.end()) {
int64_t feasign = std::strtoll(feasign_and_slot[0].c_str(), NULL, 10);
(*slot_to_data)[feasign_and_slot[1]].push_back(feasign);
}
}
// NOTE:: if the slot has no value, then fill [0] as it's data.
for (auto& item : slot_to_index) {
if (slot_to_data->find(item.first) == slot_to_data->end()) {
(*slot_to_data)[item.first].push_back(0);
}
}
}
class Reader {
public:
virtual ~Reader() {}
virtual bool HasNext() = 0;
virtual void NextLine(std::string* line) = 0;
};
class GzipReader : public Reader {
public:
explicit GzipReader(const std::string& file_name)
: gzstream_(file_name.c_str()) {}
~GzipReader() {}
bool HasNext() override { return gzstream_.peek() != EOF; }
void NextLine(std::string* line) override { std::getline(gzstream_, *line); }
private:
igzstream gzstream_;
};
class MultiGzipReader : public Reader {
public:
explicit MultiGzipReader(const std::vector<std::string>& file_list) {
for (auto& file : file_list) {
readers_.emplace_back(std::make_shared<GzipReader>(file));
}
}
bool HasNext() override {
if (current_reader_index_ >= readers_.size()) {
return false;
}
if (!readers_[current_reader_index_]->HasNext()) {
current_reader_index_++;
return HasNext();
}
return true;
}
void NextLine(std::string* line) override {
readers_[current_reader_index_]->NextLine(line);
}
private:
std::vector<std::shared_ptr<GzipReader>> readers_;
size_t current_reader_index_ = 0;
};
void MonitorThread(std::vector<ReaderThreadStatus>* thread_status,
std::shared_ptr<LoDTensorBlockingQueue> queue) {
VLOG(30) << "monitor thread in";
bool reader_thread_is_running = true;
while (reader_thread_is_running) {
VLOG(30) << "reader_thread_is_running";
reader_thread_is_running = false;
for (size_t i = 0; i < (*thread_status).size(); ++i) {
if ((*thread_status)[i] == Running) {
VLOG(30) << "reader is running!";
reader_thread_is_running = true;
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
VLOG(30) << "all reader thread is stopped, push empty data into queue";
queue->Push({});
VLOG(30) << "monitor thread exited";
}
void ReadThread(const std::vector<std::string>& file_list,
const std::vector<std::string>& slots, int batch_size,
int thread_id, std::vector<ReaderThreadStatus>* thread_status,
std::shared_ptr<LoDTensorBlockingQueue> queue) {
VLOG(30) << "[" << thread_id << "]"
<< " reader thread start! thread_id = " << thread_id;
for (auto& file : file_list) {
VLOG(30) << "[" << thread_id << "]"
<< " file " << file;
}
(*thread_status)[thread_id] = Running;
VLOG(30) << "set status to running";
std::unordered_map<std::string, size_t> slot_to_index;
for (size_t i = 0; i < slots.size(); ++i) {
slot_to_index[slots[i]] = i;
}
std::string line;
std::vector<std::unordered_map<std::string, std::vector<int64_t>>> batch_data;
std::vector<int64_t> batch_label;
MultiGzipReader reader(file_list);
VLOG(30) << "reader inited";
while (reader.HasNext()) {
batch_data.clear();
batch_data.reserve(batch_size);
batch_label.clear();
batch_label.reserve(batch_size);
// read batch_size data
for (int i = 0; i < batch_size; ++i) {
if (reader.HasNext()) {
reader.NextLine(&line);
std::unordered_map<std::string, std::vector<int64_t>> slot_to_data;
int64_t label;
parse_line(line, slot_to_index, &label, &slot_to_data);
batch_data.push_back(slot_to_data);
batch_label.push_back(label);
} else {
break;
}
}
std::vector<framework::LoDTensor> lod_datas;
// first insert tensor for each slots
for (auto& slot : slots) {
std::vector<size_t> lod_data{0};
std::vector<int64_t> batch_feasign;
for (size_t i = 0; i < batch_data.size(); ++i) {
auto& feasign = batch_data[i][slot];
lod_data.push_back(lod_data.back() + feasign.size());
batch_feasign.insert(batch_feasign.end(), feasign.begin(),
feasign.end());
}
framework::LoDTensor lod_tensor;
framework::LoD lod{lod_data};
lod_tensor.set_lod(lod);
int64_t* tensor_data = lod_tensor.mutable_data<int64_t>(
framework::make_ddim({1, static_cast<int64_t>(batch_feasign.size())}),
platform::CPUPlace());
memcpy(tensor_data, batch_feasign.data(),
batch_feasign.size() * sizeof(int64_t));
lod_datas.push_back(lod_tensor);
}
// insert label tensor
framework::LoDTensor label_tensor;
auto* label_tensor_data = label_tensor.mutable_data<int64_t>(
framework::make_ddim({1, static_cast<int64_t>(batch_label.size())}),
platform::CPUPlace());
memcpy(label_tensor_data, batch_label.data(),
batch_label.size() * sizeof(int64_t));
lod_datas.push_back(label_tensor);
queue->Push(lod_datas);
VLOG(40) << "push one data, queue_size=" << queue->Size();
}
(*thread_status)[thread_id] = Stopped;
VLOG(30) << "set status to stopped, thread " << thread_id << " exited";
}
} // namespace reader
} // namespace operators
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sys/time.h>
#include <chrono> // NOLINT
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
namespace paddle {
namespace operators {
namespace reader {
enum ReaderThreadStatus { Running, Stopped };
void ReadThread(const std::vector<std::string>& file_list,
const std::vector<std::string>& slots, int batch_size,
int thread_id, std::vector<ReaderThreadStatus>* thread_status,
std::shared_ptr<LoDTensorBlockingQueue> queue);
// monitor all running thread, if they are all stopped,
// then push an empty data into LoDTensorBlockingQueue
void MonitorThread(std::vector<ReaderThreadStatus>* thread_status,
std::shared_ptr<LoDTensorBlockingQueue> queue);
class CTRReader : public framework::FileReader {
public:
explicit CTRReader(const std::shared_ptr<LoDTensorBlockingQueue>& queue,
int batch_size, int thread_num,
const std::vector<std::string>& slots,
const std::vector<std::string>& file_list)
: batch_size_(batch_size), slots_(slots), file_list_(file_list) {
PADDLE_ENFORCE_GT(thread_num, 0, "thread num should be larger then 0!");
PADDLE_ENFORCE(queue != nullptr, "LoDTensorBlockingQueue must not be null");
PADDLE_ENFORCE_GT(file_list.size(), 0, "file list should not be empty");
thread_num_ =
file_list_.size() > thread_num ? thread_num : file_list_.size();
queue_ = queue;
SplitFiles();
for (size_t i = 0; i < thread_num_; ++i) {
read_thread_status_.push_back(Stopped);
}
}
~CTRReader() {}
void ReadNext(std::vector<framework::LoDTensor>* out) override {
bool success;
*out = queue_->Pop(&success);
if (!success) out->clear();
}
void Shutdown() override {
VLOG(3) << "Shutdown reader";
if (status_ == ReaderStatus::kStopped) {
return;
}
// shutdown should stop all the reader thread
for (auto& read_thread : read_threads_) {
read_thread->join();
}
monitor_thread_->join();
read_threads_.clear();
monitor_thread_.reset(nullptr);
queue_->Close();
status_ = ReaderStatus::kStopped;
}
void Start() override {
VLOG(3) << "Start reader";
PADDLE_ENFORCE_EQ(read_threads_.size(), 0, "read thread should be empty!");
queue_->ReOpen();
VLOG(3) << "reopen success";
VLOG(3) << "thread_num " << thread_num_;
for (int thread_id = 0; thread_id < thread_num_; thread_id++) {
read_threads_.emplace_back(new std::thread(
std::bind(&ReadThread, file_groups_[thread_id], slots_, batch_size_,
thread_id, &read_thread_status_, queue_)));
}
monitor_thread_.reset(new std::thread(
std::bind(&MonitorThread, &read_thread_status_, queue_)));
status_ = ReaderStatus::kRunning;
}
private:
void SplitFiles() {
file_groups_.resize(thread_num_);
for (size_t i = 0; i < file_list_.size(); ++i) {
auto& file_name = file_list_[i];
std::ifstream f(file_name.c_str());
PADDLE_ENFORCE(f.good(), "file %s not exist!", file_name);
file_groups_[i % thread_num_].push_back(file_name);
}
}
private:
size_t thread_num_;
const int batch_size_;
const std::vector<std::string> slots_;
const std::vector<std::string> file_list_;
std::shared_ptr<LoDTensorBlockingQueue> queue_;
std::vector<std::unique_ptr<std::thread>> read_threads_;
std::unique_ptr<std::thread> monitor_thread_;
std::vector<ReaderThreadStatus> read_thread_status_;
std::vector<std::vector<std::string>> file_groups_;
};
} // namespace reader
} // namespace operators
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include <gzstream.h>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <cstring>
#include <fstream>
#include <tuple>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
using paddle::operators::reader::LoDTensorBlockingQueue;
using paddle::operators::reader::LoDTensorBlockingQueueHolder;
using paddle::operators::reader::CTRReader;
using paddle::framework::LoDTensor;
using paddle::framework::LoD;
using paddle::framework::DDim;
using paddle::platform::CPUPlace;
using paddle::framework::make_ddim;
static void generatedata(const std::vector<std::string>& data,
const std::string& file_name) {
std::ifstream in(file_name.c_str());
if (in.good()) {
VLOG(3) << "file " << file_name << " exist, delete it first!";
remove(file_name.c_str());
} else {
in.close();
}
ogzstream out(file_name.c_str());
PADDLE_ENFORCE(out.good(), "open file %s failed!", file_name);
for (auto& c : data) {
out << c;
}
out.close();
PADDLE_ENFORCE(out.good(), "save file %s failed!", file_name);
}
static inline void check_all_data(
const std::vector<std::string>& ctr_data,
const std::vector<std::string>& slots, const std::vector<DDim>& label_dims,
const std::vector<int64_t>& label_value,
const std::vector<std::tuple<LoD, std::vector<int64_t>>>& data_slot_6002,
const std::vector<std::tuple<LoD, std::vector<int64_t>>>& data_slot_6003,
size_t batch_num, size_t batch_size,
std::shared_ptr<LoDTensorBlockingQueue> queue, CTRReader* reader) {
std::vector<LoDTensor> out;
for (size_t i = 0; i < batch_num; ++i) {
reader->ReadNext(&out);
ASSERT_EQ(out.size(), slots.size() + 1);
auto& label_tensor = out.back();
ASSERT_EQ(label_tensor.dims(), label_dims[i]);
for (size_t j = 0; j < batch_size && i * batch_num + j < ctr_data.size();
++j) {
auto& label = label_tensor.data<int64_t>()[j];
ASSERT_TRUE(label == 0 || label == 1);
ASSERT_EQ(label, label_value[i * batch_size + j]);
}
auto& tensor_6002 = out[0];
ASSERT_EQ(std::get<0>(data_slot_6002[i]), tensor_6002.lod());
ASSERT_EQ(std::memcmp(std::get<1>(data_slot_6002[i]).data(),
tensor_6002.data<int64_t>(),
tensor_6002.dims()[1] * sizeof(int64_t)),
0);
}
reader->ReadNext(&out);
ASSERT_EQ(out.size(), 0);
ASSERT_EQ(queue->Size(), 0);
}
TEST(CTR_READER, read_data) {
const std::vector<std::string> ctr_data = {
"aaaa 1 0 0:6002 1:6003 2:6004 3:6005 4:6006 -1\n",
"bbbb 1 0 5:6003 6:6003 7:6003 8:6004 9:6004 -1\n",
"cccc 1 1 10:6002 11:6002 12:6002 13:6002 14:6002 -2\n",
"dddd 1 0 15:6003 16:6003 17:6003 18:6003 19:6004 -3\n",
"1111 1 1 20:6001 21:6001 22:6001 23:6001 24:6001 12\n",
"2222 1 1 25:6004 26:6004 27:6004 28:6005 29:6005 aa\n",
"3333 1 0 30:6002 31:6003 32:6004 33:6004 34:6005 er\n",
"eeee 1 1 35:6003 36:6003 37:6005 38:6005 39:6005 dd\n",
"ffff 1 1 40:6002 41:6003 42:6004 43:6004 44:6005 66\n",
"gggg 1 1 46:6006 45:6006 47:6003 48:6003 49:6003 ba\n",
};
std::string gz_file_name = "test_ctr_reader_data.gz";
generatedata(ctr_data, gz_file_name);
std::vector<int64_t> label_value = {0, 0, 1, 0, 1, 1, 0, 1, 1, 1};
std::tuple<LoD, std::vector<int64_t>> a1({{0, 1, 2, 7}},
{0, 0, 10, 11, 12, 13, 14});
std::tuple<LoD, std::vector<int64_t>> a2({{0, 1, 2, 3}}, {0, 0, 0});
std::tuple<LoD, std::vector<int64_t>> a3({{0, 1, 2, 3}}, {30, 0, 40});
std::tuple<LoD, std::vector<int64_t>> a4({{0, 1}}, {0});
std::vector<std::tuple<LoD, std::vector<int64_t>>> data_slot_6002{a1, a2, a3,
a4};
std::tuple<LoD, std::vector<int64_t>> b1({{0, 1, 4, 5}}, {1, 5, 6, 7, 0});
std::tuple<LoD, std::vector<int64_t>> b2({{0, 4, 5, 6}},
{15, 16, 17, 18, 0, 0});
std::tuple<LoD, std::vector<int64_t>> b3({{0, 1, 3, 4}}, {31, 35, 36, 41});
std::tuple<LoD, std::vector<int64_t>> b4({{0, 3}}, {47, 48, 49});
std::vector<std::tuple<LoD, std::vector<int64_t>>> data_slot_6003{b1, b2, b3,
b4};
std::vector<DDim> label_dims = {{1, 3}, {1, 3}, {1, 3}, {1, 1}};
LoDTensorBlockingQueueHolder queue_holder;
int capacity = 64;
queue_holder.InitOnce(capacity, {}, false);
std::shared_ptr<LoDTensorBlockingQueue> queue = queue_holder.GetQueue();
int batch_size = 3;
int thread_num = 1;
std::vector<std::string> slots = {"6002", "6003"};
std::vector<std::string> file_list;
for (int i = 0; i < thread_num; ++i) {
file_list.push_back(gz_file_name);
}
CTRReader reader(queue, batch_size, thread_num, slots, file_list);
reader.Start();
size_t batch_num =
std::ceil(static_cast<float>(ctr_data.size()) / batch_size) * thread_num;
check_all_data(ctr_data, slots, label_dims, label_value, data_slot_6002,
data_slot_6003, batch_num, batch_size, queue, &reader);
reader.Shutdown();
reader.Start();
check_all_data(ctr_data, slots, label_dims, label_value, data_slot_6002,
data_slot_6003, batch_num, batch_size, queue, &reader);
reader.Shutdown();
}
......@@ -1039,6 +1039,11 @@ HOSTDEVICE inline float16 exp(const float16& a) {
return float16(::expf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 erf(const float16& a) {
return float16(::erff(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 log(const float16& a) {
return float16(::logf(static_cast<float>(a)));
......
......@@ -20,12 +20,12 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#ifndef _WIN32
const float fraction_of_gpu_memory_to_use = 0.92f;
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
const float fraction_of_gpu_memory_to_use = 0.5f;
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
#endif
DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <mkldnn.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
......@@ -292,5 +293,21 @@ inline mkldnn::memory::format data_format_to_memory_format(
}
}
inline mkldnn::memory::format StringToMKLDNNFormat(std::string* format) {
std::transform(format->begin(), format->end(), format->begin(), ::tolower);
if (!format->compare("nchw")) {
return mkldnn::memory::format::nchw;
} else if (!format->compare("nchw16c")) {
return mkldnn::memory::format::nChw16c;
} else if (!format->compare("nchw8c")) {
return mkldnn::memory::format::nChw8c;
} else if (!format->compare("nhwc")) {
return mkldnn::memory::format::nhwc;
} else {
return mkldnn::memory::format::any;
}
}
} // namespace platform
} // namespace paddle
......@@ -29,8 +29,16 @@ limitations under the License. */
namespace pybind11 {
namespace detail {
#if !defined(PYBIND11_HIDDEN)
#ifdef _WIN32
#define PYBIND11_HIDDEN __declspec(dllexport)
#else
#define PYBIND11_HIDDEN __attribute__((visibility("hidden")))
#endif
#endif
// Can be replaced by a generic lambda in C++14
struct __attribute__((visibility("hidden"))) paddle_variant_caster_visitor
struct PYBIND11_HIDDEN paddle_variant_caster_visitor
: public boost::static_visitor<handle> {
return_value_policy policy;
handle parent;
......
......@@ -860,6 +860,12 @@ All parameter, weight, gradient are variables in Paddle.
self.remove_unnecessary_lock_ = b;
},
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
.def_property(
"num_trainers",
[](const BuildStrategy &self) { return self.num_trainers_; },
[](BuildStrategy &self, int num_trainers) {
self.num_trainers_ = num_trainers;
})
.def_property(
"fuse_elewise_add_act_ops",
[](const BuildStrategy &self) {
......
......@@ -137,10 +137,10 @@ inline pid_t gettid() {
#define __NR_gettid 224
#endif
pid_t tid = syscall(__NR_gettid);
#endif
#else // _WIN32
pid_t tid = _getpid();
#endif // _WIN32
#endif
CHECK_NE((int)tid, -1);
return tid;
}
......
......@@ -469,18 +469,21 @@ function assert_api_spec_approvals() {
BRANCH="develop"
fi
API_CHANGE=`git diff --name-only upstream/$BRANCH | grep "paddle/fluid/API.spec" || true`
echo "checking API.spec change, PR: ${GIT_PR_ID}, changes: ${API_CHANGE}"
if [ ${API_CHANGE} ] && [ "${GIT_PR_ID}" != "" ]; then
# NOTE: per_page=10000 should be ok for all cases, a PR review > 10000 is not human readable.
APPROVALS=`curl -H "Authorization: token ${GITHUB_API_TOKEN}" https://api.github.com/repos/PaddlePaddle/Paddle/pulls/${GIT_PR_ID}/reviews?per_page=10000 | \
python ${PADDLE_ROOT}/tools/check_pr_approval.py 2 7845005 2887803 728699 13348433`
echo "current pr ${GIT_PR_ID} got approvals: ${APPROVALS}"
if [ "${APPROVALS}" == "FALSE" ]; then
echo "You must have at least 2 approvals for the api change!"
exit 1
fi
fi
API_FILES=("paddle/fluid/API.spec" "paddle/fluid/framework/operator.h")
for API_FILE in ${API_FILES[*]}; do
API_CHANGE=`git diff --name-only upstream/$BRANCH | grep "${API_FILE}" || true`
echo "checking ${API_FILE} change, PR: ${GIT_PR_ID}, changes: ${API_CHANGE}"
if [ ${API_CHANGE} ] && [ "${GIT_PR_ID}" != "" ]; then
# NOTE: per_page=10000 should be ok for all cases, a PR review > 10000 is not human readable.
APPROVALS=`curl -H "Authorization: token ${GITHUB_API_TOKEN}" https://api.github.com/repos/PaddlePaddle/Paddle/pulls/${GIT_PR_ID}/reviews?per_page=10000 | \
python ${PADDLE_ROOT}/tools/check_pr_approval.py 2 7845005 2887803 728699 13348433`
echo "current pr ${GIT_PR_ID} got approvals: ${APPROVALS}"
if [ "${APPROVALS}" == "FALSE" ]; then
echo "You must have at least 2 approvals for the api change! ${API_FILE}"
exit 1
fi
fi
done
}
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid import core
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import default_main_program, \
default_startup_program, Variable
from paddle.fluid.unique_name import generate as unique_name
def monkey_patch_reader_methods(reader):
def __get_reader__():
scope = global_scope()
var = scope.find_var(reader.name)
return var.get_reader()
def reset():
return __get_reader__().reset()
reader.reset = reset
reader.stop_gradient = True
reader.persistable = True
return reader
def _copy_reader_var_(block, var):
new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
new_var.desc.set_shapes(var.desc.shapes())
new_var.desc.set_dtypes(var.desc.dtypes())
new_var.persistable = True
return new_var
def ctr_reader(feed_data,
capacity,
thread_num,
batch_size,
file_list,
slots,
name=None):
"""
Create a CTR reader for data feeding in Python
This layer returns a Reader Variable.
The Reader provides :code:`decorate_paddle_reader()` and
:code:`decorate_tensor_provider()` to set a Python generator as the data
source in Python side. When :code:`Executor::Run()` is invoked in C++
side, the data from the generator would be read automatically. Unlike
:code:`DataFeeder.feed()`, the data reading process and
:code:`Executor::Run()` process can run in parallel using
:code:`py_reader`. The :code:`start()` method of the Reader should be
called when each pass begins, while the :code:`reset()` method should be
called when the pass ends and :code:`fluid.core.EOFException` raises.
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
capacity(int): The buffer capacity maintained by :code:`py_reader`.
thread_num(list|tuple): List of tuples which declaring data shapes.
batch_size(list|tuple): List of strs which declaring data type.
file_list(list|tuple): List of ints which declaring data lod_level.
slots(bool): Whether use double buffer or not.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
Variable: A Reader from which we can get feeding data.
Examples:
1. The basic usage of :code:`py_reader` is as follows:
"""
if name is None:
queue_name = unique_name('lod_tensor_blocking_queue')
reader_name = unique_name('create_ctr_reader')
else:
queue_name = "_".join([name, "queue"])
reader_name = "_".join([name, "reader"])
var = global_scope().var(queue_name)
feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)
startup_blk = default_startup_program().current_block()
reader_var = startup_blk.create_var(name=reader_name)
startup_blk.append_op(
type='create_ctr_reader',
inputs={'blocking_queue': [queue_name]},
outputs={'Out': [reader_var]},
attrs={
'thread_num': thread_num,
'batch_size': batch_size,
'file_list': file_list,
'slots': slots,
})
reader_var.persistable = True
main_prog_reader_var = _copy_reader_var_(
default_main_program().current_block(), reader_var)
reader = monkey_patch_reader_methods(main_prog_reader_var)
# monkey patch py_reader special methods
reader.queue = feed_queue
reader.exited = False
main_blk = default_main_program().current_block()
main_blk.append_op(
type='read', inputs={'Reader': [reader]}, outputs={'Out': feed_data})
return reader
......@@ -637,8 +637,8 @@ def save_inference_model(dirname,
if isinstance(target_vars, Variable):
target_vars = [target_vars]
elif export_for_deployment:
if not (bool(target_vars) and all(
isinstance(var, Variable) for var in target_vars)):
if not (bool(target_vars) and
all(isinstance(var, Variable) for var in target_vars)):
raise ValueError("'target_vars' should be a list of Variable.")
if main_program is None:
......@@ -667,10 +667,15 @@ def save_inference_model(dirname,
if export_for_deployment:
main_program = main_program.clone()
global_block = main_program.global_block()
need_to_remove_op_index = []
for i, op in enumerate(global_block.ops):
op.desc.set_is_target(False)
if op.type == "feed" or op.type == "fetch":
global_block._remove_op(i)
need_to_remove_op_index.append(i)
for index in need_to_remove_op_index[::-1]:
global_block._remove_op(index)
main_program.desc.flush()
main_program = main_program._prune(targets=target_vars)
......
......@@ -4394,7 +4394,8 @@ def nce(input,
name=None,
sampler="uniform",
custom_dist=None,
seed=0):
seed=0,
is_sparse=False):
"""
${comment}
......@@ -4420,11 +4421,12 @@ def nce(input,
sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'.
custom_dist (Variable): A tensor with shape [num_total_classes].
custom_dist (float[]): A float[] with size=num_total_classes.
It is used when sampler is set to 'custom_dist'.
custom_dist[i] is the probsbility of i-th class to be sampled.
default: None.
seed (int): The seed used in sampler. default: 0.
is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
Returns:
Variable: The output nce loss.
......@@ -4476,12 +4478,7 @@ def nce(input,
shape=[num_total_classes, dim],
is_bias=False,
dtype=input.dtype)
inputs = {
'Input': input,
'Label': label,
'Weight': w,
'SampleWeight': sample_weight if sample_weight is not None else []
}
inputs = {}
if helper.bias_attr:
b = helper.create_parameter(
attr=helper.bias_attr,
......@@ -4493,18 +4490,10 @@ def nce(input,
sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
if num_neg_samples is None:
num_neg_samples = 10
else:
num_neg_samples = int(num_neg_samples)
inputs = {
'Input': input,
'Label': label,
'Weight': w,
'Bias': b,
'SampleWeight': sample_weight if sample_weight is not None else []
}
inputs['Input'] = input
inputs['Label'] = label
inputs['Weight'] = w
inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
if sampler == "uniform":
sampler = 0
......@@ -4512,17 +4501,73 @@ def nce(input,
sampler = 1
elif sampler == "custom_dist":
assert custom_dist is not None
assert isinstance(custom_dist, Variable)
inputs['CustomDistribution'] = custom_dist
# assert isinstance(custom_dist, Variable)
custom_dist_len = len(custom_dist)
alias_probs_ = [0] * custom_dist_len
alias_ = [0] * custom_dist_len
bigs = []
littles = []
for i in range(custom_dist_len):
normal_prob = custom_dist[i] * custom_dist_len
if normal_prob - 1.0 > 1e-4:
bigs.append((i, normal_prob))
elif 1.0 - normal_prob > 1e-4:
littles.append((i, normal_prob))
else:
alias_probs_[i] = normal_prob
alias_[i] = -1
while len(bigs) and len(littles):
big = bigs.pop(0)
little = littles.pop(0)
big_idx = big[0]
big_prob = big[1]
alias_probs_[little[0]] = little[1]
alias_[little[0]] = big_idx
big_left = big[1] + little[1] - 1
if big_left - 1.0 > 1e-4:
bigs.append((big_idx, big_left))
elif 1.0 - big_left > 1e-4:
littles.append((big_idx, big_left))
else:
alias_probs_[big_idx] = big_left
alias_[big_idx] = -1
if len(bigs):
big = bigs.pop(0)
alias_probs_[big[0]] = 1.0
alias_[big[0]] = -1
if len(littles):
little = littles.pop(0)
alias_probs_[little[0]] = 1.0
alias_[little[0]] = -1
probs = assign(input=np.array(custom_dist).astype('float32'))
custom_alias = assign(input=np.array(alias_).astype('int32'))
custom_alias_probs = assign(
input=np.array(alias_probs_).astype('float32'))
inputs['CustomDistProbs'] = probs
inputs['CustomDistAlias'] = custom_alias
inputs['CustomDistAliasProbs'] = custom_alias_probs
sampler = 2
else:
raise Exception("Unsupported sampler type.")
if num_neg_samples is None:
num_neg_samples = 10
else:
num_neg_samples = int(num_neg_samples)
attrs = {
'num_total_classes': int(num_total_classes),
'num_neg_samples': num_neg_samples,
'seed': seed,
'sampler': sampler
'sampler': sampler,
'is_sparse': is_sparse
}
helper.append_op(
......@@ -4542,27 +4587,43 @@ def hsigmoid(input,
num_classes,
param_attr=None,
bias_attr=None,
name=None):
name=None,
path_table=None,
path_code=None,
is_custom=False,
is_sparse=False):
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
complete binary tree, each leaf node represents a class(a word) and each
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
internal node on the path, and sum them to get a total cost. hsigmoid can
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the size of word dict.
Refer to `Hierarchical Probabilistic Neural Network Language Model
Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
Args:
input (Variable): The input tensor variable with shape
:math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N \\times 1]`.
num_classes: (int), The number of classes, must not be less than 2.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as param_attr. If the Initializer of the param_attr
......@@ -4574,9 +4635,19 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
Returns:
Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Examples:
......@@ -4592,27 +4663,62 @@ def hsigmoid(input,
out = helper.create_variable_for_type_inference(dtype)
pre_out = helper.create_variable_for_type_inference(dtype)
dim = input.shape[1]
if num_classes < 2:
raise ValueError("num_classes must not be less than 2.")
weights = helper.create_parameter(
attr=helper.param_attr,
shape=[num_classes - 1, dim],
is_bias=False,
dtype=input.dtype)
inputs = {"X": input, "W": weights, "Label": label}
if helper.bias_attr:
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=[1, num_classes - 1],
is_bias=True,
if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
raise ValueError(
"num_classes must not be less than 2 with default tree")
if (is_custom) and (path_code is None):
raise ValueError("path_code should not be None with costum tree")
elif (is_custom) and (path_table is None):
raise ValueError("path_table should not be None with costum tree")
elif (is_custom) and (num_classes is None):
raise ValueError("num_classes should not be None with costum tree")
else:
pass
weights = None
if not is_custom:
weights = helper.create_parameter(
attr=helper.param_attr,
shape=[num_classes - 1, dim],
is_bias=False,
dtype=input.dtype)
inputs['Bias'] = bias
else:
weights = helper.create_parameter(
attr=helper.param_attr,
shape=[num_classes, dim],
is_bias=False,
dtype=input.dtype)
inputs = {
"X": input,
"W": weights,
"PTable": path_table,
"PathCode": path_code,
"Label": label
}
if helper.bias_attr:
if not is_custom:
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=[num_classes - 1, 1],
is_bias=True,
dtype=input.dtype)
inputs['Bias'] = bias
else:
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=[num_classes, 1],
is_bias=True,
dtype=input.dtype)
inputs['Bias'] = bias
helper.append_op(
type="hierarchical_sigmoid",
inputs=inputs,
outputs={"Out": out,
"PreOut": pre_out},
attrs={"num_classes": num_classes})
attrs={"num_classes": num_classes,
"is_sparse": is_sparse})
return out
......@@ -5870,9 +5976,10 @@ def image_resize(input,
raise ValueError(
"The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
)
resample_type = resample_methods[resample]
if out_shape is None and scale is None:
raise ValueError("One of out_shape and scale must not be None.")
helper = LayerHelper('interpolate', **locals())
helper = LayerHelper('{}_interp'.format(resample_type), **locals())
dtype = helper.input_dtype()
def _is_list_or_turple_(data):
......@@ -5906,18 +6013,16 @@ def image_resize(input,
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='interpolate',
type='{}_interp'.format(resample_type),
inputs=inputs,
outputs={"Out": out},
attrs={
"out_h": out_h,
"out_w": out_w,
"interp_method": resample_methods[resample]
})
attrs={"out_h": out_h,
"out_w": out_w,
"interp_method": resample_type})
return out
@templatedoc(op_type="interpolate")
@templatedoc(op_type="bilinear_interp")
def resize_bilinear(input,
out_shape=None,
scale=None,
......@@ -5973,7 +6078,7 @@ def resize_bilinear(input,
return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
@templatedoc(op_type="interpolate")
@templatedoc(op_type="nearest_interp")
def resize_nearest(input,
out_shape=None,
scale=None,
......@@ -6475,7 +6580,7 @@ def crop(x, shape=None, offsets=None, name=None):
helper = LayerHelper('crop', **locals())
if not (isinstance(shape, list) or isinstance(shape, tuple) or \
isinstance(shape, Variable)):
isinstance(shape, Variable)):
raise ValueError("The shape should be a list, tuple or Variable.")
if offsets is None:
......@@ -6597,7 +6702,7 @@ def affine_grid(theta, out_shape, name=None):
helper = LayerHelper('affine_grid')
if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
isinstance(out_shape, Variable)):
isinstance(out_shape, Variable)):
raise ValueError("The out_shape should be a list, tuple or Variable.")
if not isinstance(theta, Variable):
......@@ -6838,6 +6943,13 @@ def elu(x, alpha=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.elu(x, alpha=0.2)
"""
helper = LayerHelper('elu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6861,6 +6973,13 @@ def relu6(x, threshold=6.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.relu6(x, threshold=6.0)
"""
helper = LayerHelper('relu6', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6884,6 +7003,13 @@ def pow(x, factor=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.pow(x, factor=2.0)
"""
helper = LayerHelper('pow', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6908,6 +7034,13 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
"""
helper = LayerHelper('stanh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6933,6 +7066,13 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
"""
helper = LayerHelper('hard_sigmoid', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6957,6 +7097,13 @@ def swish(x, beta=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.swish(x, beta=2.0)
"""
helper = LayerHelper('swish', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
......@@ -124,16 +124,11 @@ class ParallelExecutor(object):
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exec_strategy.num_threads = cpu_num * 2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if num_trainers > 1:
assert (use_cuda)
# FIXME(gongwb): avoid this set.
exec_strategy.num_threads = 1
if build_strategy is None:
build_strategy = BuildStrategy()
build_strategy.num_trainers = num_trainers
main = main_program
main = main if main else framework.default_main_program()
if scope == None:
......
......@@ -63,7 +63,7 @@ function(py_test_modules TARGET_NAME)
set(multiValueArgs MODULES DEPS ENVS)
cmake_parse_arguments(py_test_modules "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_modules_ENVS}
COMMAND ${CMAKE_COMMAND} -E env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_modules_ENVS}
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/tools/test_runner.py ${py_test_modules_MODULES}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
if (py_test_modules_SERIAL)
......@@ -81,12 +81,14 @@ list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
list(REMOVE_ITEM TEST_OPS test_dist_transformer)
list(REMOVE_ITEM TEST_OPS test_parallel_executor_transformer)
list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list(REMOVE_ITEM TEST_OPS test_interpolate_op)
list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
endforeach(TEST_OP)
py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR} SERIAL)
py_test_modules(test_interpolate_op MODULES test_interpolate_op SERIAL)
py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL)
if(WITH_DISTRIBUTE)
py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20)
......
......@@ -18,7 +18,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from scipy.special import expit
from scipy.special import expit, erf
class TestActivation(OpTest):
......@@ -295,6 +295,23 @@ class TestRelu(TestActivation):
self.check_grad(['X'], 'Out', max_relative_error=0.007)
class TestGelu(TestActivation):
def setUp(self):
self.op_type = "gelu"
self.init_dtype()
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = 0.5 * x * (1.0 + erf(x / np.sqrt(2.0)))
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007)
class TestBRelu(TestActivation):
def setUp(self):
self.op_type = "brelu"
......@@ -628,6 +645,7 @@ create_test_act_fp16_class(TestCos, grad_atol=0.85)
create_test_act_fp16_class(TestSin)
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
create_test_act_fp16_class(TestGelu)
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
......
......@@ -20,36 +20,6 @@ from op_test import OpTest
import paddle.fluid.core as core
def nearest_neighbor_interp_np(X,
out_h,
out_w,
out_size=None,
actual_shape=None):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
n, c, in_h, in_w = X.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
out = np.zeros((n, c, out_h, out_w))
for i in range(out_h):
in_i = int(ratio_h * i + 0.5)
for j in range(out_w):
in_j = int(ratio_w * j + 0.5)
out[:, :, i, j] = X[:, :, in_i, in_j]
return out.astype(X.dtype)
def bilinear_interp_np(input, out_h, out_w, out_size=None, actual_shape=None):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
......@@ -87,22 +57,16 @@ def bilinear_interp_np(input, out_h, out_w, out_size=None, actual_shape=None):
return out.astype(input.dtype)
INTERPOLATE_FUNCS = {
'bilinear': bilinear_interp_np,
'nearest': nearest_neighbor_interp_np,
}
class TestInterpolateOp(OpTest):
class TestBilinearInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "interpolate"
self.op_type = "bilinear_interp"
input_np = np.random.random(self.input_shape).astype("float32")
output_np = INTERPOLATE_FUNCS[self.interp_method](
input_np, self.out_h, self.out_w, self.out_size, self.actual_shape)
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
......@@ -129,7 +93,7 @@ class TestInterpolateOp(OpTest):
self.out_size = np.array([3, 3]).astype("int32")
class TestBilinearInterpCase1(TestInterpolateOp):
class TestBilinearInterpCase1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
......@@ -137,7 +101,7 @@ class TestBilinearInterpCase1(TestInterpolateOp):
self.out_w = 1
class TestBilinearInterpCase2(TestInterpolateOp):
class TestBilinearInterpCase2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
......@@ -145,7 +109,7 @@ class TestBilinearInterpCase2(TestInterpolateOp):
self.out_w = 12
class TestBilinearInterpCase3(TestInterpolateOp):
class TestBilinearInterpCase3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 128, 64]
......@@ -153,7 +117,7 @@ class TestBilinearInterpCase3(TestInterpolateOp):
self.out_w = 128
class TestBilinearInterpCase4(TestInterpolateOp):
class TestBilinearInterpCase4(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
......@@ -162,7 +126,7 @@ class TestBilinearInterpCase4(TestInterpolateOp):
self.out_size = np.array([2, 2]).astype("int32")
class TestBilinearInterpCase5(TestInterpolateOp):
class TestBilinearInterpCase5(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
......@@ -171,7 +135,7 @@ class TestBilinearInterpCase5(TestInterpolateOp):
self.out_size = np.array([11, 11]).astype("int32")
class TestBilinearInterpCase6(TestInterpolateOp):
class TestBilinearInterpCase6(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 128, 64]
......@@ -180,7 +144,7 @@ class TestBilinearInterpCase6(TestInterpolateOp):
self.out_size = np.array([65, 129]).astype("int32")
class TestBilinearInterpActualShape(TestInterpolateOp):
class TestBilinearInterpActualShape(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
......@@ -189,25 +153,16 @@ class TestBilinearInterpActualShape(TestInterpolateOp):
self.out_size = np.array([66, 40]).astype("int32")
class TestBilinearInterpBigScale(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 4, 64, 32]
self.out_h = 100
self.out_w = 50
self.out_size = np.array([101, 51]).astype('int32')
class TestInterpolateOpUint8(OpTest):
class TestBilinearInterpOpUint8(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "interpolate"
self.op_type = "bilinear_interp"
input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8")
output_np = INTERPOLATE_FUNCS[self.interp_method](
input_np, self.out_h, self.out_w, self.out_size, self.actual_shape)
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
......@@ -228,7 +183,7 @@ class TestInterpolateOpUint8(OpTest):
self.out_w = 9
class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 128, 64]
......@@ -236,7 +191,7 @@ class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
self.out_w = 50
class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
......@@ -245,91 +200,5 @@ class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
self.out_size = np.array([6, 15]).astype("int32")
class TestNearestNeighborInterpCase1(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestNearestNeighborInterpCase2(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestNearestNeighborInterpCase3(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
class TestNearestNeighborInterpCase4(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestNearestNeighborInterpCase5(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestNearestNeighborInterpCase6(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
class TestNearestNeighborInterpActualShape(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.out_size = np.array([66, 40]).astype("int32")
class TestNearestNeighborInterpBigScale(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 4, 64, 32]
self.out_h = 100
self.out_w = 50
self.out_size = np.array([101, 51]).astype('int32')
class TestNearestNeighborInterpCase1Uint8(TestInterpolateOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 128, 64]
self.out_h = 120
self.out_w = 50
class TestNearestNeighborInterpCase2Uint8(TestInterpolateOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 5
self.out_w = 13
self.out_size = np.array([6, 15]).astype("int32")
if __name__ == "__main__":
unittest.main()
......@@ -16,6 +16,8 @@ from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import math
from op_test import OpTest
......@@ -40,6 +42,29 @@ class CodeTable(object):
return self.c & (1 << bit)
class CodeTableWithCustomTree(object):
def __init__(self, path_table, path_code, index):
self.ptable_ = path_table
self.pcode_ = path_code
self.index_ = index
def cal_index(self, bit):
return self.ptable_[self.index_][bit]
def get_length(self):
length = 0
for ele in self.ptable_[self.index_]: # find the first -1 to stop trace
if ele >= 0:
length = length + 1
else:
return length
return length
def cal_bit(self, bit):
return self.pcode_[self.index_][bit]
def hsigmoid(x, w, label, bias, num_classes):
batch_size = x.shape[0]
code_length = find_latest_set(num_classes - 1)
......@@ -52,7 +77,7 @@ def hsigmoid(x, w, label, bias, num_classes):
length = code_table.get_length()
for j in range(length):
idx = code_table.cal_index(j)
pre_output[i][j] += bias[0][idx]
pre_output[i][j] += bias[idx][0]
for i in range(batch_size):
code_table = CodeTable(num_classes, label[i])
length = code_table.get_length()
......@@ -77,17 +102,58 @@ def hsigmoid(x, w, label, bias, num_classes):
return pre_output, out
def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias,
num_classes):
batch_size = x.shape[0]
code_length = len(path_table[0])
code_table = [0 for _ in range(code_length)]
# init pre_out with shape [N, code_length]
pre_output = np.zeros((batch_size, code_length))
pre_sum = np.zeros((batch_size, 1))
out = np.zeros((batch_size, 1)).astype("float32")
if isinstance(bias, np.ndarray):
for i in range(batch_size):
code_table = CodeTableWithCustomTree(path_table, path_code, i)
length = code_table.get_length()
for j in range(length):
idx = code_table.cal_index(j)
pre_output[i][j] += bias[idx][0]
for i in range(batch_size):
code_table = CodeTableWithCustomTree(path_table, path_code, i)
length = code_table.get_length()
for j in range(length):
idx = code_table.cal_index(j)
pre_output[i][j] += np.dot(w[idx], x[i])
# clip[-40.0, 40.0]
pre_output = np.clip(pre_output, -40.0, 40.0)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for i in range(batch_size):
code_table = CodeTableWithCustomTree(path_table, path_code, i)
length = code_table.get_length()
sum = 0.0
for j in range(length):
if code_table.cal_bit(j):
sum += pre_output[i][j]
out[i] = -1.0 * sum
# soft relu
pre_output = np.log(1 + np.exp(pre_output))
pre_sum = pre_output.sum(1).reshape((batch_size, 1))
out += pre_sum
return pre_output, out
class TestHSigmoidOp(OpTest):
def setUp(self):
self.op_type = "hierarchical_sigmoid"
num_classes = 6
feature_size = 8
batch_size = 4
x = np.random.random((batch_size, feature_size)).astype("float32")
w = np.random.random((num_classes - 1, feature_size)).astype("float32")
x = np.random.random((batch_size, feature_size)).astype("float32") * 2
w = np.random.random(
(num_classes - 1, feature_size)).astype("float32") * 2
label = np.random.randint(0, num_classes, (batch_size, 1))
bias = np.random.random((1, num_classes - 1)).astype("float32")
self.attrs = {'num_classes': num_classes}
bias = np.random.random((num_classes - 1, 1)).astype("float32")
self.attrs = {'num_classes': num_classes, 'is_sparse': False}
self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
pre_output, out = hsigmoid(x, w, label, bias, num_classes)
self.outputs = {'PreOut': pre_output, 'Out': out}
......@@ -99,5 +165,185 @@ class TestHSigmoidOp(OpTest):
self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
class TestHSigmoidOpSparse(OpTest):
def setUp(self):
self.op_type = "hierarchical_sigmoid"
num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size = 8
batch_size = 4
x = np.random.random((batch_size, feature_size)).astype("float32")
w = np.random.random((num_classes - 1, feature_size)).astype("float32")
label = np.array([0, 1, 4, 5])
path_table = np.array(
[(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
(0, 2, -1, -1,
-1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
bias = np.random.random((num_classes - 1, 1)).astype("float32")
self.attrs = {'num_classes': num_classes, 'is_sparse': True}
self.inputs = {
'X': x,
'W': w,
'PTable': path_table,
'PathCode': path_code,
'Label': label,
'Bias': bias
}
pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
label, bias, num_classes)
self.outputs = {'PreOut': pre_output, 'Out': out}
def test_check_output(self):
self.check_output()
class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
def hs_net_conf(self, is_sparse):
input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
path_table = fluid.layers.data(
name='path_table', shape=[3], dtype='int64')
path_code = fluid.layers.data(
name='path_code', shape=[3], dtype='int64')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
data_list = [input_word, path_table, path_code, label]
emb = fluid.layers.embedding(
input=input_word,
is_sparse=is_sparse,
size=[3, 3],
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(3))))
cost = fluid.layers.hsigmoid(
input=emb,
label=label,
bias_attr=True,
num_classes=3,
path_table=path_table,
path_code=path_code,
is_custom=True,
is_sparse=is_sparse)
avg_cost = fluid.layers.reduce_mean(cost)
return avg_cost, data_list
def training_test(self, is_sparse):
with fluid.program_guard(fluid.Program(), fluid.Program()):
start_up = fluid.default_startup_program()
start_up.random_seed = 1 # Fix random seed
x = np.arange(6).reshape(6)
path_table = np.array([(1, 2, -1), (1, 2, -1)])
path_code = np.array([(1, 0, -1), (0, 0, -1)])
label = np.array([1, 4])
loss, data_list = self.hs_net_conf(is_sparse)
optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
optimizer.minimize(loss)
main_program = fluid.default_main_program()
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(feed_list=data_list, place=place)
exe = fluid.Executor(place)
exe.run(start_up)
result = list()
for i in range(10):
data = [([[x[i % 2]]], [list(path_table[i % 2])],
[list(path_code[i % 2])], [label[i % 2]])]
loss_val = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])
result.append(loss_val)
return result
def test_hs_grad_with_sparse(self):
dense_result = self.training_test(is_sparse=False)
sparse_result = self.training_test(is_sparse=True)
assert (dense_result == sparse_result)
class TestHSigmoidOpWithCostumTree(OpTest):
def setUp(self):
self.op_type = "hierarchical_sigmoid"
num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size = 8
batch_size = 4
x = np.random.random((batch_size, feature_size)).astype("float32") * 2
w = np.random.random(
(num_classes - 1, feature_size)).astype("float32") * 2
label = np.array([0, 1, 4, 5])
path_table = np.array(
[(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
(0, 2, -1, -1,
-1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
bias = np.random.random((num_classes - 1, 1)).astype("float32")
self.attrs = {'num_classes': num_classes, 'is_sparse': False}
self.inputs = {
'X': x,
'W': w,
'PTable': path_table,
'PathCode': path_code,
'Label': label,
'Bias': bias
}
pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
label, bias, num_classes)
self.outputs = {'PreOut': pre_output, 'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
def setUp(self):
self.op_type = "hierarchical_sigmoid"
num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size = 8
batch_size = 4
x = np.random.random((batch_size, feature_size)).astype("float32") * 2
w = np.random.random(
(num_classes - 1, feature_size)).astype("float32") * 2
label = np.array([0, 1, 4, 5])
path_table = np.array(
[(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
(0, 2, -1, -1,
-1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
# bias = np.random.random((num_classes - 1, 1)).astype("float32")
self.attrs = {'num_classes': num_classes, 'is_sparse': False}
self.inputs = {
'X': x,
'W': w,
'PTable': path_table,
'PathCode': path_code,
'Label': label,
}
pre_output, out = hsigmoidWithCustomTree(
x=x,
w=w,
path_table=path_table,
path_code=path_code,
label=label,
bias=None,
num_classes=num_classes)
self.outputs = {'PreOut': pre_output, 'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'W'], ['Out'], no_grad_set=set('Label'))
if __name__ == '__main__':
unittest.main()
......@@ -185,6 +185,25 @@ class TestBook(unittest.TestCase):
input=x, label=y, num_classes=2))
print(str(program))
# test hsigmod with custom tree structure
program2 = Program()
with program_guard(program2):
x2 = layers.data(name='x2', shape=[4, 8], dtype='float32')
y2 = layers.data(name='y2', shape=[4], dtype='int64')
path_table = layers.data(
name='path_table', shape=[4, 6], dtype='int64')
path_code = layers.data(
name='path_code', shape=[4, 6], dtype='int64')
self.assertIsNotNone(
layers.hsigmoid(
input=x2,
label=y2,
num_classes=6,
path_table=path_table,
path_code=path_code,
is_custom=True))
print(str(program2))
def test_sequence_expand(self):
program = Program()
with program_guard(program):
......
......@@ -14,8 +14,12 @@
from __future__ import print_function
import unittest
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.initializer as initializer
from op_test import OpTest
......@@ -59,7 +63,7 @@ def nce(input, weight, bias, sample_weight, labels, num_classes,
class TestNCE(OpTest):
def generate_data(self, dim, batch_size, num_classes, num_true_class,
num_neg_samples):
num_neg_samples, is_sparse):
input = np.random.randn(batch_size, dim).astype(np.float32)
weight = np.random.randn(num_classes, dim).astype(np.float32)
bias = np.random.randn(num_classes).astype(np.float32)
......@@ -70,7 +74,8 @@ class TestNCE(OpTest):
'num_neg_samples': num_neg_samples,
'custom_neg_classes': list(range(num_neg_samples)),
'seed': 0,
'sampler': 0
'sampler': 0,
'is_sparse': is_sparse
}
self.inputs = {
'Input': input,
......@@ -81,7 +86,7 @@ class TestNCE(OpTest):
}
def set_data(self):
self.generate_data(5, 5, 4, 1, 2)
self.generate_data(5, 5, 4, 1, 2, False)
def compute(self):
out = nce(self.inputs['Input'], self.inputs['Weight'],
......@@ -107,9 +112,110 @@ class TestNCE(OpTest):
["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02)
class TestNCECase1(TestNCE):
class TestNCECase1Tensor(TestNCE):
def set_data(self):
self.generate_data(10, 20, 10, 2, 5)
self.generate_data(10, 20, 10, 2, 5, False)
class TestNCECase1SelectedRows(unittest.TestCase):
def setUp(self):
self.base_lr = 0.0001
self.batch_size = 8
@staticmethod
def get_place():
place = fluid.core.CPUPlace()
return place
@staticmethod
def get_train_data(batch_size):
batchs = []
for i in range(batch_size):
input = np.random.randn(batch_size, 10).astype(np.float32)
labels = np.random.randint(0, 20, (batch_size, 1))
batchs.append([input, labels])
return batchs
def get_optimizer(self):
# SGD optimizer
optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
return optimizer
def train_network(self, num_total_classes, num_neg_samples, sampler,
custom_dist, is_sparse):
input = fluid.layers.data(name="input", shape=[10], dtype="float32")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
w_param = fluid.default_main_program().global_block().create_parameter(
shape=[num_total_classes, 10],
dtype='float32',
name='nce_w',
initializer=initializer.ConstantInitializer())
b_param = fluid.default_main_program().global_block().create_parameter(
shape=[num_total_classes, 1],
dtype='float32',
name='nce_b',
initializer=initializer.ConstantInitializer())
cost = fluid.layers.nce(input=input,
label=label,
num_total_classes=num_total_classes,
sampler=sampler,
custom_dist=custom_dist,
sample_weight=None,
param_attr='nce_w',
bias_attr='nce_b',
seed=1,
num_neg_samples=num_neg_samples,
is_sparse=is_sparse)
avg_cost = fluid.layers.mean(cost)
# optimizer
optimizer = self.get_optimizer()
optimizer.minimize(avg_cost)
return [avg_cost, [input, label]]
def test_input_is_selected_rows(self):
place = self.get_place()
exe = fluid.Executor(place)
data = self.get_train_data(self.batch_size)
nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
rets = []
# for dense
dense_scope = fluid.core.Scope()
dense_startup_program = fluid.framework.Program()
dense_train_program = fluid.framework.Program()
with fluid.scope_guard(dense_scope):
with fluid.program_guard(dense_train_program,
dense_startup_program):
cost, feeds = self.train_network(20, 5, "custom_dist",
nid_freq_arr.tolist(), False)
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
exe.run(dense_startup_program)
loss_val = exe.run(dense_train_program,
feed=feeder.feed(data),
fetch_list=[cost.name])
rets.append(np.mean(loss_val))
# for sparse
sparse_scope = fluid.core.Scope()
sparse_startup_program = fluid.framework.Program()
sparse_train_program = fluid.framework.Program()
with fluid.scope_guard(sparse_scope):
with fluid.program_guard(sparse_train_program,
sparse_startup_program):
cost, feeds = self.train_network(20, 5, "custom_dist",
nid_freq_arr.tolist(), True)
feeder = fluid.DataFeeder(feed_list=feeds, place=place)
exe.run(sparse_startup_program)
loss_val = exe.run(sparse_train_program,
feed=feeder.feed(data),
fetch_list=[cost.name])
rets.append(np.mean(loss_val))
self.assertEqual(rets[0], rets[1])
if __name__ == '__main__':
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
def nearest_neighbor_interp_np(X,
out_h,
out_w,
out_size=None,
actual_shape=None):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
n, c, in_h, in_w = X.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
out = np.zeros((n, c, out_h, out_w))
for i in range(out_h):
in_i = int(ratio_h * i + 0.5)
for j in range(out_w):
in_j = int(ratio_w * j + 0.5)
out[:, :, i, j] = X[:, :, in_i, in_j]
return out.astype(X.dtype)
class TestNearestInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "nearest_interp"
input_np = np.random.random(self.input_shape).astype("float32")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method
}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 4, 4]
self.out_h = 2
self.out_w = 2
self.out_size = np.array([3, 3]).astype("int32")
class TestNearestNeighborInterpCase1(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestNearestNeighborInterpCase2(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestNearestNeighborInterpCase3(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
class TestNearestNeighborInterpCase4(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestNearestNeighborInterpCase5(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestNearestNeighborInterpCase6(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.out_size = np.array([66, 40]).astype("int32")
class TestNearestInterpOpUint8(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "nearest_interp"
input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method
}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output_with_place(place=core.CPUPlace(), atol=1)
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 3, 9, 6]
self.out_h = 10
self.out_w = 9
class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 128, 64]
self.out_h = 120
self.out_w = 50
class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 5
self.out_w = 13
self.out_size = np.array([6, 15]).astype("int32")
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册