Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
9bf7d041
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9bf7d041
编写于
2月 05, 2021
作者:
F
Feng Ni
提交者:
GitHub
2月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[dygraph] Fix quickstart doc (#2190)
* fix_quickstart_doc
上级
01d57c6a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
9 addition
and
26 deletion
+9
-26
dygraph/README.md
dygraph/README.md
+1
-1
dygraph/docs/tutorials/QUICK_STARTED_cn.md
dygraph/docs/tutorials/QUICK_STARTED_cn.md
+8
-25
未找到文件。
dygraph/README.md
浏览文件 @
9bf7d041
...
...
@@ -130,7 +130,7 @@ PaddleDetection模块化地实现了多种主流目标检测算法,提供了
### 入门教程
-
[
安装说明
](
docs/tutorials/INSTALL_cn.md
)
-
[
快速开始
](
docs/tutorials/QUICK_START_cn.md
)
-
[
快速开始
](
docs/tutorials/QUICK_START
ED
_cn.md
)
-
[
如何准备数据
](
docs/tutorials/PrepareDataSet.md
)
-
[
训练/评估/预测流程
](
docs/tutorials/GETTING_STARTED_cn.md
)
...
...
dygraph/docs/tutorials/QUICK_STARTED_cn.md
浏览文件 @
9bf7d041
...
...
@@ -11,6 +11,7 @@ export CUDA_VISIBLE_DEVICES=0
# 用PP-YOLO算法在COCO数据集上预训练模型预测一张图片
python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg
```
结果如下图:
![
demo image
](
../images/000000014439.jpg
)
...
...
@@ -25,43 +26,25 @@ python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=
python dataset/roadsign_voc/download_roadsign_voc.py
```
## 三、训练、评估、预测
### 1、训练
```
# 边训练边测试 CPU需要约1小时(use_gpu=false),1080Ti GPU需要约10分钟
。
# 边训练边测试 CPU需要约1小时(use_gpu=false),1080Ti GPU需要约10分钟
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),这里设置使用gpu,
# --eval 参数表示边训练边评估,会自动保存一个评估结果最的名为model_final.pdmodel的模型
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),这里设置使用gpu
# --eval 参数表示边训练边评估,最后会自动保存一个名为model_final.pdparams的模型
python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true --weight_type finetune
```
如果想通过VisualDL实时观察loss变化曲线,在训练命令中添加--use_vdl=true,以及通过--vdl_log_dir设置日志保存路径。
**但注意VisualDL需Python>=3.5**
首先安装
[
VisualDL
](
https://github.com/PaddlePaddle/VisualDL
)
```
python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
```
```
python -u tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml \
--use_vdl=true \
--vdl_log_dir=vdl_dir/scalar \
--eval
```
通过visualdl命令实时查看变化曲线:
```
visualdl --logdir vdl_dir/scalar/ --host <host_IP> --port <port_num>
```
### 2、评估
```
# 评估 默认使用训练过程中保存的model_final
# 评估 默认使用训练过程中保存的model_final
.pdparams
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),需使用单卡评估
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置)
# 目前只支持单卡评估
python tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true
```
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录