Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
99010e6e
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
99010e6e
编写于
1月 12, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init repeated fc relu op
上级
266a5d2f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
190 addition
and
0 deletion
+190
-0
paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc
paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc
+149
-0
paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.h
paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.h
+41
-0
未找到文件。
paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc
0 → 100644
浏览文件 @
99010e6e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
namespace
paddle
{
namespace
operators
{
void
FusionRepeatedFCReluOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of FusionRepeatedFCReluOp should not be null."
);
auto
sz
=
ctx
->
Inputs
(
"W"
).
size
();
PADDLE_ENFORCE_GT
(
sz
,
1UL
,
"Inputs(W) of FusionRepeatedFCReluOp should larger than 1."
);
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"Bias"
).
size
(),
sz
,
"Size of inputs(Bias) of FusionRepeatedFCReluOp should be "
"equal to inputs size."
);
PADDLE_ENFORCE_EQ
(
ctx
->
Outputs
(
"ReluOut"
).
size
(),
sz
-
1
,
"Size of output(ReluOut) of FusionRepeatedFCReluOp should "
"be equal to inputs size -1."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FusionRepeatedFCReluOp should not be null."
);
auto
i_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
i_dims
.
size
(),
2UL
,
"Input shape size should be 2"
);
auto
w_dims
=
ctx
->
GetInputsDim
(
"W"
);
auto
b_dims
=
ctx
->
GetInputsDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
b_dims
.
size
(),
"Shape size of weight and bias should be equal"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
sz
,
"Shape size of weight and bias should be equal"
);
PADDLE_ENFORCE_EQ
(
i_dims
[
1
],
w_dims
[
0
][
0
],
"inpute width should be equal with weight height"
);
for
(
size_t
i
=
1
;
i
<
sz
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
w_dims
[
i
].
size
(),
2UL
,
"Every weight shape size should be 2."
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
b_dims
[
i
]),
w_dims
[
i
][
1
],
"The length of Bias must be equal with w_dims[1]."
);
}
ctx
->
SetOutputDim
(
"Out"
,
{
i_dims
[
0
],
w_dims
[
sz
-
1
][
1
]});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
framework
::
OpKernelType
FusionRepeatedFCReluOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"X"
)),
ctx
.
GetPlace
());
}
void
FusionRepeatedFCReluOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) Input tensors of this operator."
);
AddInput
(
"W"
,
"(Tensor) The weight tensors of this operator."
).
AsDuplicable
();
AddInput
(
"Bias"
,
"(Tensor) The bias tensors of this operator."
)
.
AsDuplicable
();
AddOutput
(
"ReluOut"
,
"(Tensor) The output tensor of each relu operator."
)
.
AsDuplicable
()
.
AsIntermediate
();
AddOutput
(
"Out"
,
"(LoDTensor) Output tensor of this operator."
);
AddComment
(
R"DOC(
Fusion Repeated FC with Relu Operator.
)DOC"
);
}
template
<
typename
T
>
static
void
fc_relu
(
const
T
*
x
,
const
T
*
w
,
const
T
*
b
,
T
*
y
,
int
m
,
int
n
,
int
k
)
{
auto
matmul
=
jit
::
Get
<
jit
::
kMatMul
,
jit
::
MatMulTuples
<
T
>
,
platform
::
CPUPlace
>
(
k
);
auto
addbias_relu
=
jit
::
Get
<
jit
::
kVAddRelu
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
matmul
(
x
,
w
,
y
,
m
,
n
,
k
);
T
*
dst
=
y
;
for
(
int
i
=
0
;
i
<
m
;
++
i
)
{
addbias_relu
(
b
,
dst
,
dst
,
n
);
dst
+=
n
;
}
}
template
<
typename
T
>
class
FusionRepeatedFCReluKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
weights
=
ctx
.
MultiInput
<
Tensor
>
(
"W"
);
auto
biases
=
ctx
.
MultiInput
<
Tensor
>
(
"Bias"
);
auto
relus
=
ctx
.
MultiOutput
<
Tensor
>
(
"ReluOut"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
int
weight_sz
=
static_cast
<
int
>
(
weights
.
size
());
auto
i_dims
=
in
->
dims
();
auto
w_dims
=
weights
[
0
]
->
dims
();
int
m
=
i_dims
[
0
];
int
n
=
w_dims
[
1
];
int
k
=
w_dims
[
0
];
relus
[
0
]
->
Resize
({
m
,
n
});
fc_relu
(
in
->
data
<
T
>
(),
weights
[
0
]
->
data
<
T
>
(),
biases
[
0
]
->
data
<
T
>
(),
relus
[
0
]
->
mutable_data
<
T
>
(
place
),
m
,
n
,
k
);
for
(
int
i
=
1
;
i
<
weight_sz
-
1
;
++
i
)
{
auto
i_dims
=
relus
[
i
-
1
]
->
dims
();
auto
w_dims
=
weights
[
i
]
->
dims
();
int
m
=
i_dims
[
0
];
int
n
=
w_dims
[
1
];
int
k
=
w_dims
[
0
];
relus
[
i
-
1
]
->
Resize
({
m
,
n
});
fc_relu
(
relus
[
i
-
1
]
->
data
<
T
>
(),
weights
[
i
]
->
data
<
T
>
(),
biases
[
i
]
->
data
<
T
>
(),
relus
[
i
]
->
mutable_data
<
T
>
(
place
),
m
,
n
,
k
);
}
auto
i_dims_last
=
relus
[
weight_sz
-
2
]
->
dims
();
auto
w_dims_last
=
weights
[
weight_sz
-
1
]
->
dims
();
m
=
i_dims_last
[
0
];
n
=
w_dims_last
[
1
];
k
=
w_dims_last
[
0
];
fc_relu
(
relus
[
weight_sz
-
2
]
->
data
<
T
>
(),
weights
[
weight_sz
-
1
]
->
data
<
T
>
(),
biases
[
weight_sz
-
1
]
->
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
place
),
m
,
n
,
k
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fusion_repeated_fc_relu
,
ops
::
FusionRepeatedFCReluOp
,
ops
::
FusionRepeatedFCReluOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
fusion_repeated_fc_relu
,
ops
::
FusionRepeatedFCReluKernel
<
float
>
,
ops
::
FusionRepeatedFCReluKernel
<
double
>
);
paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.h
0 → 100644
浏览文件 @
99010e6e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
FusionRepeatedFCReluOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
FusionRepeatedFCReluOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录