Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
97b76c94
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
97b76c94
编写于
1月 28, 2019
作者:
Z
Zhaolong Xing
提交者:
GitHub
1月 28, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15242 from NHZlX/trt_int8_ultimate_version
add trt int8 support
上级
10bc9ffc
b43ea40c
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
674 addition
and
59 deletion
+674
-59
paddle/fluid/framework/ir/graph_traits.cc
paddle/fluid/framework/ir/graph_traits.cc
+2
-1
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+3
-0
paddle/fluid/inference/analysis/helper.cc
paddle/fluid/inference/analysis/helper.cc
+8
-0
paddle/fluid/inference/analysis/helper.h
paddle/fluid/inference/analysis/helper.h
+54
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+19
-2
paddle/fluid/inference/analysis/ir_pass_manager.h
paddle/fluid/inference/analysis/ir_pass_manager.h
+3
-2
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+46
-7
paddle/fluid/inference/analysis/passes/ir_graph_to_program_pass.cc
...uid/inference/analysis/passes/ir_graph_to_program_pass.cc
+5
-1
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+5
-3
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+73
-0
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+15
-0
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+7
-1
paddle/fluid/inference/tensorrt/CMakeLists.txt
paddle/fluid/inference/tensorrt/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+7
-0
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+16
-8
paddle/fluid/inference/tensorrt/trt_int8_calibrator.cc
paddle/fluid/inference/tensorrt/trt_int8_calibrator.cc
+147
-0
paddle/fluid/inference/tensorrt/trt_int8_calibrator.h
paddle/fluid/inference/tensorrt/trt_int8_calibrator.h
+128
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
+7
-1
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+93
-4
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
+25
-25
paddle/fluid/pybind/inference_api.cc
paddle/fluid/pybind/inference_api.cc
+10
-3
未找到文件。
paddle/fluid/framework/ir/graph_traits.cc
浏览文件 @
97b76c94
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/framework/ir/graph_traits.h"
#include <set>
#include <vector>
namespace
paddle
{
...
...
@@ -79,7 +80,7 @@ NodesTSIterator::NodesTSIterator(const std::vector<Node *> &source) {
}
std
::
unordered_set
<
Node
*>
visited
;
std
::
unordered_
set
<
Node
*>
to_visit
{
source
.
begin
(),
source
.
end
()};
std
::
set
<
Node
*>
to_visit
{
source
.
begin
(),
source
.
end
()};
std
::
vector
<
Node
*>
inlink_visited
;
while
(
!
to_visit
.
empty
())
{
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
97b76c94
...
...
@@ -28,6 +28,7 @@
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/platform/variant.h"
namespace
paddle
{
...
...
@@ -130,6 +131,8 @@ struct Argument {
DECL_ARGUMENT_FIELD
(
tensorrt_max_batch_size
,
TensorRtMaxBatchSize
,
int
);
DECL_ARGUMENT_FIELD
(
tensorrt_workspace_size
,
TensorRtWorkspaceSize
,
int
);
DECL_ARGUMENT_FIELD
(
tensorrt_min_subgraph_size
,
TensorRtMinSubgraphSize
,
int
);
DECL_ARGUMENT_FIELD
(
tensorrt_precision_mode
,
TensorRtPrecisionMode
,
contrib
::
AnalysisConfig
::
Precision
);
// Memory optimized related.
DECL_ARGUMENT_FIELD
(
enable_memory_optim
,
EnableMemoryOptim
,
bool
);
...
...
paddle/fluid/inference/analysis/helper.cc
浏览文件 @
97b76c94
...
...
@@ -36,6 +36,14 @@ void SetAttr<int>(framework::proto::OpDesc *op, const std::string &name,
attr
->
set_i
(
data
);
}
template
<
>
void
SetAttr
<
bool
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
bool
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
BOOLEAN
);
attr
->
set_b
(
data
);
}
template
<
>
void
SetAttr
<
int64_t
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int64_t
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
...
...
paddle/fluid/inference/analysis/helper.h
浏览文件 @
97b76c94
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <sys/stat.h>
#include <cstdio>
#include <fstream>
#include <set>
#include <string>
#include <typeindex>
#include <unordered_map>
...
...
@@ -29,9 +30,14 @@ limitations under the License. */
#include "paddle/fluid/platform/port.h"
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#define GCC_ATTRIBUTE(attr__) ;
#define MKDIR(path) _mkdir(path)
#else
#include <unistd.h>
#define GCC_ATTRIBUTE(attr__) __attribute__((attr__));
#define MKDIR(path) mkdir(path, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH)
#endif
#define __SHOULD_USE_RESULT__ GCC_ATTRIBUTE(warn_unused_result)
...
...
@@ -163,6 +169,54 @@ static bool PathExists(const std::string &path) {
return
false
;
}
static
std
::
string
GetDirRoot
(
const
std
::
string
&
path
)
{
char
sep
=
'/'
;
#ifdef _WIN32
sep
=
'\\'
;
#endif
size_t
i
=
path
.
rfind
(
sep
,
path
.
length
());
if
(
i
!=
std
::
string
::
npos
)
{
return
(
path
.
substr
(
0
,
i
));
}
return
path
;
}
static
std
::
string
GetOrCreateModelOptCacheDir
(
const
std
::
string
&
model_root
)
{
std
::
string
opt_cache_dir
=
model_root
+
"/_opt_cache/"
;
if
(
!
PathExists
(
opt_cache_dir
))
{
PADDLE_ENFORCE
(
MKDIR
(
opt_cache_dir
.
c_str
())
!=
-
1
,
"Can not create optimize cache directory: %s, Make sure you "
"have permission to write"
,
opt_cache_dir
);
}
return
opt_cache_dir
;
}
static
std
::
string
GetTrtCalibPath
(
const
std
::
string
&
model_root
,
const
std
::
string
&
engine_key
)
{
return
model_root
+
"/trt_calib_"
+
engine_key
;
}
// If there is no calib table data file in model_opt_cache_dir, return "".
static
std
::
string
GetTrtCalibTableData
(
const
std
::
string
&
model_opt_cache_dir
,
const
std
::
string
&
engine_key
,
bool
enable_int8
)
{
std
::
string
trt_calib_table_path
=
GetTrtCalibPath
(
model_opt_cache_dir
,
engine_key
);
if
(
enable_int8
&&
FileExists
(
trt_calib_table_path
))
{
VLOG
(
3
)
<<
"Calibration table file: "
<<
trt_calib_table_path
<<
"is found here"
;
std
::
ifstream
infile
(
trt_calib_table_path
,
std
::
ios
::
in
);
std
::
stringstream
buffer
;
buffer
<<
infile
.
rdbuf
();
std
::
string
calibration_data
(
buffer
.
str
());
return
calibration_data
;
}
return
""
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
97b76c94
...
...
@@ -67,6 +67,20 @@ void IRPassManager::CreatePasses(Argument *argument,
pass
->
Set
(
"max_batch_size"
,
new
int
(
argument
->
tensorrt_max_batch_size
()));
pass
->
Set
(
"min_subgraph_size"
,
new
int
(
argument
->
tensorrt_min_subgraph_size
()));
pass
->
Set
(
"program"
,
new
framework
::
ProgramDesc
*
(
&
argument
->
main_program
()));
bool
enable_int8
=
argument
->
tensorrt_precision_mode
()
==
contrib
::
AnalysisConfig
::
Precision
::
kInt8
;
pass
->
Set
(
"enable_int8"
,
new
bool
(
enable_int8
));
std
::
string
model_opt_cache_dir
=
argument
->
Has
(
"model_dir"
)
?
argument
->
model_dir
()
:
GetDirRoot
(
argument
->
model_program_path
());
pass
->
Set
(
"model_opt_cache_dir"
,
new
std
::
string
(
GetOrCreateModelOptCacheDir
(
model_opt_cache_dir
)));
}
// graph_ = pass->Apply(std::move(graph_));
...
...
@@ -91,11 +105,14 @@ std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
}
framework
::
proto
::
ProgramDesc
IRPassManager
::
AcquireProgram
(
std
::
unique_ptr
<
Graph
>
*
graph
,
const
ProgramDesc
&
program
)
const
{
std
::
unique_ptr
<
Graph
>
*
graph
,
ProgramDesc
*
program
)
const
{
auto
pass
=
framework
::
ir
::
PassRegistry
::
Instance
().
Get
(
"graph_to_program_pass"
);
ProgramDesc
desc
(
program
);
// Direct using ProgramDesc desc(argument->main_program()) may cause
// incomplete copies of information.
ProgramDesc
desc
;
desc
.
CopyFrom
(
*
program
->
Proto
());
pass
->
SetNotOwned
(
"program"
,
&
desc
);
auto
*
the_graph
=
graph
->
release
();
*
graph
=
pass
->
Apply
(
std
::
unique_ptr
<
Graph
>
(
the_graph
));
...
...
paddle/fluid/inference/analysis/ir_pass_manager.h
浏览文件 @
97b76c94
...
...
@@ -29,6 +29,7 @@
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/helper.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -42,8 +43,8 @@ class IRPassManager final {
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
);
framework
::
proto
::
ProgramDesc
AcquireProgram
(
std
::
unique_ptr
<
Graph
>
*
graph
,
const
ProgramDesc
&
program
)
const
;
framework
::
proto
::
ProgramDesc
AcquireProgram
(
std
::
unique_ptr
<
Graph
>
*
graph
,
ProgramDesc
*
program
)
const
;
framework
::
ir
::
Graph
&
graph
()
const
{
return
*
graph_
;
}
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
97b76c94
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include <algorithm>
#include <set>
#include <string>
#include <vector>
...
...
@@ -67,12 +68,33 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
return
graph
;
}
std
::
string
GenerateEngineKey
(
const
std
::
set
<
std
::
string
>
&
engine_inputs
,
const
std
::
set
<
std
::
string
>
&
engine_outputs
)
{
std
::
string
engine_hash_key
=
""
;
for
(
auto
name
:
engine_inputs
)
{
engine_hash_key
+=
name
;
}
for
(
auto
name
:
engine_outputs
)
{
engine_hash_key
+=
name
;
}
auto
engine_key
=
std
::
to_string
(
std
::
hash
<
std
::
string
>
()(
engine_hash_key
));
return
engine_key
;
}
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
framework
::
ProgramDesc
*
program_desc
=
Get
<
framework
::
ProgramDesc
*>
(
"program"
);
// Add new block for TensorRTEngineOP
const
framework
::
BlockDesc
&
main_block
=
program_desc
->
Block
(
framework
::
kRootBlockIndex
);
// const framework::BlockDesc& main_block = program_desc->Block(0);
framework
::
BlockDesc
*
new_block
=
program_desc
->
AppendBlock
(
main_block
);
// An fake block desc.
framework
::
proto
::
BlockDesc
block_proto
;
framework
::
BlockDesc
block_desc
(
nullptr
,
&
block_proto
);
...
...
@@ -82,13 +104,18 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
subgraph
.
size
());
for
(
auto
*
node
:
subgraph
)
{
auto
*
new_block_op
=
new_block
->
AppendOp
();
auto
*
op
=
block_desc
.
AppendOp
();
*
new_block_op
->
Proto
()
=
*
node
->
Op
()
->
Proto
();
*
op
->
Proto
()
=
*
node
->
Op
()
->
Proto
();
}
// collect inputs
std
::
unordered_set
<
std
::
string
>
input_names
;
std
::
unordered_set
<
std
::
string
>
input_names_with_id
;
// Then, we will use the input_names_with_id and output_names_with_id to
// generate the eigine key.
// So, We use set instead of unordered_set here to ensure that the engine key
// is unique.
std
::
set
<
std
::
string
>
input_names
;
std
::
set
<
std
::
string
>
input_names_with_id
;
for
(
auto
*
x
:
node
->
inputs
)
{
input_names
.
insert
(
x
->
Name
());
input_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
...
...
@@ -96,8 +123,8 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
op_desc
->
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
std
::
unordered_
set
<
std
::
string
>
output_names
;
std
::
unordered_
set
<
std
::
string
>
output_names_with_id
;
std
::
set
<
std
::
string
>
output_names
;
std
::
set
<
std
::
string
>
output_names_with_id
;
for
(
auto
*
x
:
node
->
outputs
)
{
output_names
.
insert
(
x
->
Name
());
output_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
...
...
@@ -182,7 +209,6 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
// to Tensor.
std
::
vector
<
std
::
string
>
output_mapping
;
for
(
auto
name
:
output_names
)
{
// LOG(INFO) << name << " " << output_name_map.size();
PADDLE_ENFORCE
(
output_name_map
.
count
(
name
)
!=
0
);
output_mapping
.
push_back
(
output_name_map
[
name
]);
}
...
...
@@ -193,16 +219,29 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
*
vars
->
Add
()
=
*
node
->
Var
()
->
Proto
();
}
}
PADDLE_ENFORCE
(
!
block_desc
.
Proto
()
->
vars
().
empty
(),
"the block has no var-desc"
);
PADDLE_ENFORCE
(
!
output_mapping
.
empty
());
// Set attrs
op_desc
->
SetBlockAttr
(
"sub_block"
,
new_block
);
SetAttr
(
op_desc
->
Proto
(),
"subgraph"
,
block_desc
.
Proto
()
->
SerializeAsString
());
// Set attrs
SetAttr
(
op_desc
->
Proto
(),
"max_batch_size"
,
Get
<
int
>
(
"max_batch_size"
));
SetAttr
(
op_desc
->
Proto
(),
"workspace_size"
,
Get
<
int
>
(
"workspace_size"
));
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
ExtractParameters
(
graph
->
Nodes
()));
SetAttr
(
op_desc
->
Proto
(),
"output_name_mapping"
,
output_mapping
);
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
engine_key
=
GenerateEngineKey
(
input_names_with_id
,
output_names_with_id
);
std
::
string
calibration_data
=
GetTrtCalibTableData
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"calibration_data"
,
calibration_data
);
SetAttr
(
op_desc
->
Proto
(),
"enable_int8"
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"engine_key"
,
engine_key
);
}
std
::
vector
<
std
::
string
>
ExtractParameters
(
...
...
paddle/fluid/inference/analysis/passes/ir_graph_to_program_pass.cc
浏览文件 @
97b76c94
...
...
@@ -31,7 +31,11 @@ void IrGraphToProgramPass::RunImpl(Argument *argument) {
}
std
::
unique_ptr
<
Graph
>
graph
(
argument
->
main_graph_ptr
());
framework
::
ProgramDesc
desc
(
argument
->
main_program
());
// Direct using ProgramDesc desc(argument->main_program()) may cause
// incomplete copies of information.
framework
::
ProgramDesc
desc
;
desc
.
CopyFrom
(
*
argument
->
main_program
().
Proto
());
pass
->
SetNotOwned
(
"program"
,
&
desc
);
auto
thegraph
=
pass
->
Apply
(
std
::
move
(
graph
));
thegraph
.
release
();
// the argument still own the graph.
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
97b76c94
...
...
@@ -102,6 +102,7 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
CP_MEMBER
(
tensorrt_workspace_size_
);
CP_MEMBER
(
tensorrt_max_batchsize_
);
CP_MEMBER
(
tensorrt_min_subgraph_size_
);
CP_MEMBER
(
tensorrt_precision_mode_
);
// MKLDNN releated.
CP_MEMBER
(
use_mkldnn_
);
CP_MEMBER
(
mkldnn_enabled_op_types_
);
...
...
@@ -141,9 +142,9 @@ void contrib::AnalysisConfig::EnableMKLDNN() {
Update
();
}
void
contrib
::
AnalysisConfig
::
EnableTensorRtEngine
(
int
workspace_size
,
int
max_batc
h_size
,
int
min_subgraph_siz
e
)
{
void
contrib
::
AnalysisConfig
::
EnableTensorRtEngine
(
int
workspace_size
,
int
max_batch_size
,
int
min_subgrap
h_size
,
contrib
::
AnalysisConfig
::
Precision
precision_mod
e
)
{
#ifdef PADDLE_WITH_CUDA
if
(
!
use_gpu
())
{
LOG
(
ERROR
)
<<
"To use TensorRT engine, please call EnableGpu() first"
;
...
...
@@ -154,6 +155,7 @@ void contrib::AnalysisConfig::EnableTensorRtEngine(int workspace_size,
tensorrt_workspace_size_
=
workspace_size
;
tensorrt_max_batchsize_
=
max_batch_size
;
tensorrt_min_subgraph_size_
=
min_subgraph_size
;
tensorrt_precision_mode_
=
precision_mode
;
Update
();
#else
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
97b76c94
...
...
@@ -15,6 +15,7 @@
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include <glog/logging.h>
#include <algorithm>
#include <fstream>
#include <memory>
#include <string>
#include <vector>
...
...
@@ -25,6 +26,7 @@
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
...
...
@@ -37,6 +39,8 @@
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#endif
DECLARE_bool
(
profile
);
...
...
@@ -44,6 +48,12 @@ DECLARE_bool(profile);
namespace
paddle
{
using
contrib
::
AnalysisConfig
;
using
inference
::
Singleton
;
#if PADDLE_WITH_TENSORRT
using
inference
::
tensorrt
::
TRTInt8Calibrator
;
using
inference
::
tensorrt
::
TRTCalibratorEngine
;
using
inference
::
tensorrt
::
TRTCalibratorEngineManager
;
#endif
namespace
{
bool
IsPersistable
(
const
framework
::
VarDesc
*
var
)
{
...
...
@@ -339,6 +349,8 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
!
config_
.
params_file
().
empty
(),
"Either model_dir or (param_file, prog_file) should be set."
);
PADDLE_ENFORCE
(
!
config_
.
prog_file
().
empty
());
std
::
string
dir
=
inference
::
analysis
::
GetDirRoot
(
config_
.
prog_file
());
argument_
.
SetModelProgramPath
(
config_
.
prog_file
());
argument_
.
SetModelParamsPath
(
config_
.
params_file
());
}
...
...
@@ -349,6 +361,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
argument_
.
SetTensorRtWorkspaceSize
(
config_
.
tensorrt_workspace_size_
);
argument_
.
SetTensorRtMaxBatchSize
(
config_
.
tensorrt_max_batchsize_
);
argument_
.
SetTensorRtMinSubgraphSize
(
config_
.
tensorrt_min_subgraph_size_
);
argument_
.
SetTensorRtPrecisionMode
(
config_
.
tensorrt_precision_mode_
);
}
if
(
config_
.
use_mkldnn_
)
{
...
...
@@ -569,7 +582,67 @@ bool AnalysisPredictor::LoadParameters() {
return
true
;
}
#if PADDLE_WITH_TENSORRT
bool
AnalysisPredictor
::
SaveTrtCalibToDisk
()
{
PADDLE_ENFORCE
(
config_
.
tensorrt_engine_enabled
(),
"This func can be invoked only in trt mode"
);
auto
&
block
=
inference_program_
->
Block
(
0
);
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
if
(
op_desc
->
Type
()
==
"tensorrt_engine"
)
{
std
::
string
engine_name
=
boost
::
get
<
std
::
string
>
(
op_desc
->
GetAttr
(
"engine_key"
));
if
(
!
Singleton
<
TRTCalibratorEngineManager
>::
Global
().
Has
(
engine_name
))
{
LOG
(
ERROR
)
<<
"You should run the predictor(with trt) on the real data "
"to generate calibration info"
;
return
false
;
}
TRTCalibratorEngine
*
calib_engine
=
Singleton
<
TRTCalibratorEngineManager
>::
Global
().
Get
(
engine_name
);
LOG
(
INFO
)
<<
"Wait for calib threads done."
;
calib_engine
->
calib_
->
waitAndSetDone
();
LOG
(
INFO
)
<<
"Generating TRT Calibration table data, this may cost a lot "
"of time..."
;
calib_engine
->
thr_
->
join
();
std
::
string
calibration_table_data
=
calib_engine
->
calib_
->
getCalibrationTableAsString
();
if
(
calibration_table_data
.
empty
())
{
LOG
(
ERROR
)
<<
"the calibration table is empty."
;
return
false
;
}
std
::
string
model_opt_cache_dir
=
argument_
.
Has
(
"model_dir"
)
?
argument_
.
model_dir
()
:
inference
::
analysis
::
GetDirRoot
(
argument_
.
model_program_path
());
std
::
string
calibration_table_data_path
=
inference
::
analysis
::
GetTrtCalibPath
(
inference
::
analysis
::
GetOrCreateModelOptCacheDir
(
model_opt_cache_dir
),
engine_name
);
std
::
ofstream
ofile
(
calibration_table_data_path
,
std
::
ios
::
out
);
LOG
(
INFO
)
<<
"Write Paddle-TRT INT8 calibration table data to file "
<<
calibration_table_data_path
;
ofile
<<
calibration_table_data
;
ofile
.
close
();
}
}
// Free all calibrator resources.
Singleton
<
TRTCalibratorEngineManager
>::
Global
().
DeleteALL
();
return
true
;
}
#endif
AnalysisPredictor
::~
AnalysisPredictor
()
{
#if PADDLE_WITH_TENSORRT
if
(
config_
.
tensorrt_engine_enabled
()
&&
config_
.
tensorrt_precision_mode_
==
AnalysisConfig
::
Precision
::
kInt8
&&
Singleton
<
TRTCalibratorEngineManager
>::
Global
().
Has
())
{
SaveTrtCalibToDisk
();
}
#endif
if
(
FLAGS_profile
)
{
platform
::
DisableProfiler
(
platform
::
EventSortingKey
::
kTotal
,
"./profile.log"
);
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
97b76c94
...
...
@@ -97,6 +97,21 @@ class AnalysisPredictor : public PaddlePredictor {
void
GetFetchOne
(
const
framework
::
LoDTensor
&
fetchs
,
PaddleTensor
*
output_data
);
#if PADDLE_WITH_TENSORRT
// When we use Paddle-TRT INT8 engine, we need to generate calibration table
// data first,
// the calibration table contains the range for each op's input and output,
// this whole process can be divided into several steps:
//
// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
// histogram for each
// tensor of the distribution of activation values.
// 2. Builds a calibration table from the histograms.
//
// After step 2, we need to store the calibration table on disk
bool
SaveTrtCalibToDisk
();
#endif
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
97b76c94
...
...
@@ -42,6 +42,10 @@ struct AnalysisConfig {
explicit
AnalysisConfig
(
const
std
::
string
&
model_dir
);
explicit
AnalysisConfig
(
const
std
::
string
&
prog_file
,
const
std
::
string
&
params_file
);
enum
class
Precision
{
kFloat32
=
0
,
kInt8
,
};
/** Set model with a directory.
*/
...
...
@@ -135,7 +139,8 @@ struct AnalysisConfig {
* subgraph is less than this, it will not transfer to TensorRT engine.
*/
void
EnableTensorRtEngine
(
int
workspace_size
=
1
<<
20
,
int
max_batch_size
=
1
,
int
min_subgraph_size
=
3
);
int
max_batch_size
=
1
,
int
min_subgraph_size
=
3
,
Precision
precision
=
Precision
::
kFloat32
);
/** A boolean state telling whether the TensorRT engine is used.
*/
bool
tensorrt_engine_enabled
()
const
{
return
use_tensorrt_
;
}
...
...
@@ -229,6 +234,7 @@ struct AnalysisConfig {
// We set this variable to control the minimum number of nodes in the
// subgraph, 3 as default value.
int
tensorrt_min_subgraph_size_
{
3
};
Precision
tensorrt_precision_mode_
;
// memory reuse related.
bool
enable_memory_optim_
{
false
};
...
...
paddle/fluid/inference/tensorrt/CMakeLists.txt
浏览文件 @
97b76c94
nv_library
(
tensorrt_engine SRCS engine.cc DEPS
${
GLOB_OPERATOR_DEPS
}
framework_proto device_context
)
nv_library
(
tensorrt_engine SRCS engine.cc
trt_int8_calibrator.cc
DEPS
${
GLOB_OPERATOR_DEPS
}
framework_proto device_context
)
nv_library
(
tensorrt_op_teller SRCS op_teller.cc DEPS framework_proto
)
nv_test
(
test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader
)
nv_test
(
test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine
)
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
97b76c94
...
...
@@ -69,6 +69,13 @@ void TensorRTEngine::FreezeNetwork() {
// build engine.
infer_builder_
->
setMaxBatchSize
(
max_batch_
);
infer_builder_
->
setMaxWorkspaceSize
(
max_workspace_
);
if
(
enable_int8_
)
{
infer_builder_
->
setInt8Mode
(
true
);
PADDLE_ENFORCE
(
calibrator_
!=
nullptr
,
"The precision mode is 'INT8', the calibrator should not be nullptr"
);
infer_builder_
->
setInt8Calibrator
(
calibrator_
);
}
infer_engine_
.
reset
(
infer_builder_
->
buildCudaEngine
(
*
infer_network_
));
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"build cuda engine failed!"
);
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
97b76c94
...
...
@@ -23,12 +23,14 @@ limitations under the License. */
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
TRTInt8Calibrator
;
/*
* TensorRT Engine.
*
...
...
@@ -55,13 +57,16 @@ class TensorRTEngine : public EngineBase {
};
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
stream
,
int
device
=
0
,
int
device
=
0
,
bool
enable_int8
=
false
,
TRTInt8Calibrator
*
calibrator
=
nullptr
,
nvinfer1
::
ILogger
&
logger
=
NaiveLogger
::
Global
())
:
max_batch_
(
max_batch
),
max_workspace_
(
max_workspace
),
stream_
(
stream
),
logger_
(
logger
),
device_
(
device
)
{}
device_
(
device
),
enable_int8_
(
enable_int8
),
calibrator_
(
calibrator
),
logger_
(
logger
)
{}
virtual
~
TensorRTEngine
();
...
...
@@ -139,8 +144,8 @@ class TensorRTEngine : public EngineBase {
// In the normal case, the paddle-trt exists bug when runing the googlenet.
// When there are more than two convolutions of 1 * 1 with the same input, the
// paddle-tensorrt will do the merging optimization, which fuse those conv
// into
//
one conv, and then trigger bug. So, We should use strategy to avoid
this
// into
one conv, and then trigger bug. So, We should use strategy to avoid
// this
// optimization for the time being. This bug will be fixed in the future.
std
::
unordered_map
<
std
::
string
/*name*/
,
int
/*ITensor_quote_num*/
>
itensor_quote_num
;
...
...
@@ -153,9 +158,14 @@ class TensorRTEngine : public EngineBase {
// the max memory size the engine uses
int
max_workspace_
;
cudaStream_t
stream_
;
// The specific GPU id that the TensorRTEngine bounded to.
int
device_
;
bool
enable_int8_
;
TRTInt8Calibrator
*
calibrator_
;
// batch size of the current data, will be updated each Executation.
int
batch_size_
{
-
1
};
cudaStream_t
stream_
;
nvinfer1
::
ILogger
&
logger_
;
...
...
@@ -165,8 +175,6 @@ class TensorRTEngine : public EngineBase {
std
::
unordered_map
<
std
::
string
/*name*/
,
nvinfer1
::
ITensor
*
/*ITensor*/
>
itensor_map_
;
// The specific GPU id that the TensorRTEngine bounded to.
int
device_
;
std
::
vector
<
std
::
unique_ptr
<
plugin
::
PluginTensorRT
>>
owned_plugin_
;
// TensorRT related internal members
...
...
paddle/fluid/inference/tensorrt/trt_int8_calibrator.cc
0 → 100644
浏览文件 @
97b76c94
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#include "glog/logging.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
// set the batch size before constructing the thread to execute engine
int
TRTInt8Calibrator
::
getBatchSize
()
const
{
return
batch_size_
;
}
TRTInt8Calibrator
::
TRTInt8Calibrator
(
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
buffers
,
int
batch_size
,
std
::
string
engine_name
,
const
platform
::
Place
place
)
:
batch_size_
(
batch_size
),
engine_name_
(
engine_name
)
{
int
i
=
0
;
VLOG
(
4
)
<<
"Init a new calibrator: "
<<
engine_name_
;
for
(
const
auto
it
:
buffers
)
{
framework
::
Tensor
temp_tensor
;
std
::
string
input_name
=
it
.
first
;
int
data_size
=
it
.
second
;
int
num_ele
=
data_size
/
sizeof
(
int16_t
);
framework
::
DDim
data_shape
=
framework
::
make_ddim
({
num_ele
});
temp_tensor
.
Resize
(
data_shape
);
data_tensors_
.
push_back
(
temp_tensor
);
data_buffers_
[
input_name
]
=
std
::
pair
<
void
*
,
size_t
>
(
static_cast
<
void
*>
(
temp_tensor
.
mutable_data
<
int16_t
>
(
place
)),
num_ele
);
i
+=
1
;
}
}
TRTInt8Calibrator
::
TRTInt8Calibrator
(
const
std
::
string
&
calib_data
)
:
batch_size_
(
0
),
calib_running_
(
false
),
data_is_set_
(
false
),
done_
(
true
),
calibration_table_
(
calib_data
)
{}
void
TRTInt8Calibrator
::
waitAndSetDone
()
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
while
((
calib_running_
||
data_is_set_
)
&&
!
done_
)
cond_
.
wait
(
lk
);
if
(
!
done_
)
{
done_
=
true
;
cond_
.
notify_all
();
}
}
// There might be more than one input for trt subgraph,
// So, we use a map to store input information.
bool
TRTInt8Calibrator
::
setBatch
(
const
std
::
unordered_map
<
std
::
string
,
void
*>&
data
)
{
VLOG
(
3
)
<<
"set batch: "
<<
engine_name_
;
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
// There is a producer and a consumer. The producer set the batch data and
// the consumer get the batch data. The size of the data pool is one.
// So, the producer has to wait for the consumer to finish processing before
// they can set the data.
while
((
calib_running_
||
data_is_set_
)
&&
(
!
done_
))
cond_
.
wait
(
lk
);
// The done_ is set to true using waitAndSetDone, When all calibration data
// are processed.
if
(
done_
)
return
false
;
// Sets the batch.
for
(
const
auto
&
it
:
data
)
{
auto
dataptr
=
data_buffers_
.
find
(
it
.
first
);
if
(
dataptr
==
data_buffers_
.
end
())
{
LOG
(
FATAL
)
<<
"FATAL "
<<
engine_name_
<<
" input name '"
<<
it
.
first
<<
"' does not match with the buffer names"
;
}
const
auto
&
d
=
dataptr
->
second
;
PADDLE_ENFORCE
(
cudaMemcpy
(
d
.
first
,
it
.
second
,
d
.
second
,
cudaMemcpyDeviceToDevice
),
"Fail to cudaMemcpy %s for %s"
,
engine_name_
,
it
.
first
);
}
data_is_set_
=
true
;
cond_
.
notify_all
();
return
true
;
}
bool
TRTInt8Calibrator
::
getBatch
(
void
**
bindings
,
const
char
**
names
,
int
num_bindings
)
{
VLOG
(
4
)
<<
"get batch: "
<<
engine_name_
;
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
// The consumer has just finished processing a data.
// The producer can set the data again.
calib_running_
=
false
;
cond_
.
notify_all
();
// As long as there is data in the pool, the consumer can get it.
while
(
!
data_is_set_
&&
!
done_
)
cond_
.
wait
(
lk
);
if
(
done_
)
return
false
;
// Gets the batch
for
(
int
i
=
0
;
i
<
num_bindings
;
i
++
)
{
auto
it
=
data_buffers_
.
find
(
names
[
i
]);
if
(
it
==
data_buffers_
.
end
())
{
LOG
(
FATAL
)
<<
"Calibration engine asked for unknown tensor name '"
<<
names
[
i
]
<<
"' at position "
<<
i
;
}
bindings
[
i
]
=
it
->
second
.
first
;
}
data_is_set_
=
false
;
calib_running_
=
true
;
VLOG
(
4
)
<<
"get batch done: "
<<
engine_name_
;
return
true
;
}
void
TRTInt8Calibrator
::
setDone
()
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
done_
=
true
;
cond_
.
notify_all
();
}
const
void
*
TRTInt8Calibrator
::
readCalibrationCache
(
size_t
&
length
)
{
if
(
calibration_table_
.
empty
())
return
nullptr
;
length
=
calibration_table_
.
size
();
return
calibration_table_
.
data
();
}
void
TRTInt8Calibrator
::
writeCalibrationCache
(
const
void
*
ptr
,
std
::
size_t
length
)
{
calibration_table_
=
std
::
string
((
const
char
*
)
ptr
,
length
);
VLOG
(
4
)
<<
"Got calibration data for "
<<
engine_name_
<<
" "
<<
ptr
<<
" length="
<<
length
;
}
TRTInt8Calibrator
::~
TRTInt8Calibrator
()
{
VLOG
(
4
)
<<
"Destroying calibrator for "
<<
engine_name_
;
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/trt_int8_calibrator.h
0 → 100644
浏览文件 @
97b76c94
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <NvInfer.h>
#include <cuda_runtime_api.h>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
TensorRTEngine
;
struct
TRTInt8Calibrator
:
public
nvinfer1
::
IInt8EntropyCalibrator
{
public:
TRTInt8Calibrator
(
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
buffers
,
int
batch_size
,
std
::
string
engine_name
,
const
platform
::
Place
place
);
explicit
TRTInt8Calibrator
(
const
std
::
string
&
calibration_data
);
~
TRTInt8Calibrator
();
int
getBatchSize
()
const
override
;
bool
getBatch
(
void
*
bindings
[],
const
char
*
names
[],
int
num_bindings
)
override
;
bool
setBatch
(
const
std
::
unordered_map
<
std
::
string
,
void
*>&
data
);
void
setDone
();
void
waitAndSetDone
();
const
void
*
readCalibrationCache
(
std
::
size_t
&
length
)
override
;
void
writeCalibrationCache
(
const
void
*
ptr
,
std
::
size_t
length
)
override
;
const
std
::
string
&
getCalibrationTableAsString
()
{
return
calibration_table_
;
}
private:
const
int
batch_size_
;
bool
calib_running_
{
true
};
bool
data_is_set_
{
false
};
bool
done_
{
false
};
std
::
mutex
mut_
;
std
::
condition_variable
cond_
;
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
void
*
,
size_t
>>
data_buffers_
;
std
::
vector
<
framework
::
Tensor
>
data_tensors_
;
std
::
string
engine_name_
;
std
::
string
calibration_table_
;
};
class
TRTCalibratorEngine
{
public:
TRTCalibratorEngine
()
{}
std
::
unique_ptr
<
TRTInt8Calibrator
>
calib_
;
std
::
unique_ptr
<
std
::
thread
>
thr_
;
std
::
unique_ptr
<
TensorRTEngine
>
engine_
;
};
/*
* Manager to control the TensorRT Int8 calibration creation and deltetion.
*/
class
TRTCalibratorEngineManager
{
public:
bool
Has
()
const
{
return
res_
.
size
()
>
0
;
}
bool
Has
(
const
std
::
string
&
name
)
const
{
if
(
res_
.
count
(
name
)
==
0
)
return
false
;
return
res_
.
at
(
name
).
get
()
!=
nullptr
;
}
// Get Int8Calibrator via name
TRTCalibratorEngine
*
Get
(
const
std
::
string
&
name
)
const
{
return
res_
.
at
(
name
).
get
();
}
// Look up or create a calibrator.
TRTCalibratorEngine
*
LookupOrCreate
(
const
std
::
string
&
engine_name
)
{
if
(
res_
.
count
(
engine_name
)
==
0
)
{
auto
*
p
=
new
TRTCalibratorEngine
;
res_
[
engine_name
].
reset
(
p
);
}
return
res_
.
at
(
engine_name
).
get
();
}
// Create an Int8Calibrator
TRTCalibratorEngine
*
Create
(
const
std
::
string
&
engine_name
)
{
auto
*
p
=
new
TRTCalibratorEngine
;
res_
[
engine_name
].
reset
(
p
);
return
p
;
}
void
DeleteALL
()
{
for
(
auto
&
item
:
res_
)
{
item
.
second
.
reset
(
nullptr
);
}
}
private:
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
TRTCalibratorEngine
>>
res_
;
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
浏览文件 @
97b76c94
...
...
@@ -29,8 +29,14 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Xs"
,
"A list of inputs."
).
AsDuplicable
();
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
std
::
string
>
(
"calibration_data"
,
"the calibration data for int8"
);
AddAttr
<
std
::
string
>
(
"engine_key"
,
"The engine_key here is used to distinguish different TRT Engines"
);
AddAttr
<
int
>
(
"max_batch_size"
,
"the maximum batch size."
);
AddAttr
<
int
>
(
"workspace_size"
,
"the workspace size."
);
AddAttr
<
framework
::
BlockDesc
*>
(
"sub_block"
,
"the trt block"
);
AddAttr
<
bool
>
(
"enable_int8"
,
"whether swith to int8 mode"
);
AddComment
(
"TensorRT engine operator."
);
}
};
...
...
@@ -47,6 +53,6 @@ class TensorRTEngineInferVarType : public framework::VarTypeInference {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
tensorrt_engine
,
ops
::
TensorRTEngineOp
,
ops
::
TensorRTEngineOpMaker
);
ops
::
TensorRTEngineOpMaker
,
ops
::
TensorRTEngineOpMaker
);
#endif // PADDLE_WITH_CUDA
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
97b76c94
...
...
@@ -17,8 +17,10 @@
#ifdef PADDLE_WITH_CUDA
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/inference/analysis/helper.h"
...
...
@@ -62,6 +64,9 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TensorRTEngine
;
using
inference
::
tensorrt
::
TRTInt8Calibrator
;
using
inference
::
tensorrt
::
TRTCalibratorEngine
;
using
inference
::
tensorrt
::
TRTCalibratorEngineManager
;
class
TensorRTEngineOp
:
public
framework
::
OperatorBase
{
private:
...
...
@@ -70,6 +75,11 @@ class TensorRTEngineOp : public framework::OperatorBase {
mutable
std
::
unique_ptr
<
TensorRTEngine
>
trt_engine_
;
int
max_batch_size_
;
int
workspace_size_
;
std
::
unique_ptr
<
TRTInt8Calibrator
>
calibrator_
;
bool
enable_int8_
;
std
::
string
calibration_data_
;
std
::
string
engine_key_
;
bool
calibration_mode_
;
public:
TensorRTEngineOp
(
const
std
::
string
&
type
,
...
...
@@ -80,19 +90,96 @@ class TensorRTEngineOp : public framework::OperatorBase {
input_names_
=
Inputs
(
"Xs"
);
max_batch_size_
=
Attr
<
int
>
(
"max_batch_size"
);
workspace_size_
=
Attr
<
int
>
(
"workspace_size"
);
enable_int8_
=
Attr
<
bool
>
(
"enable_int8"
);
calibration_data_
=
Attr
<
std
::
string
>
(
"calibration_data"
);
engine_key_
=
Attr
<
std
::
string
>
(
"engine_key"
);
auto
params
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
for
(
const
auto
&
param
:
params
)
{
param_names_
.
insert
(
param
);
}
// calibration_mode is ture represents we need to
// generate the calibration table data.
calibration_mode_
=
(
enable_int8_
&&
calibration_data_
.
size
()
==
0
);
VLOG
(
4
)
<<
"calibration_mode: "
<<
calibration_mode_
;
if
(
enable_int8_
&&
calibration_data_
.
size
())
{
calibrator_
.
reset
(
new
TRTInt8Calibrator
(
calibration_data_
));
}
}
protected:
void
RunNativeImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
framework
::
Executor
executor
(
dev_place
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
"sub_block"
);
auto
*
program
=
block
->
Program
();
auto
&
current_scope
=
scope
.
NewScope
();
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
executor
.
RunPreparedContext
(
ctx
.
get
(),
&
current_scope
,
false
,
true
,
true
);
}
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
if
(
calibration_mode_
==
true
)
{
RunCalibration
(
scope
,
dev_place
);
return
;
}
RunTrt
(
scope
,
dev_place
);
}
void
RunCalibration
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
// This process will builds a 32-bit trt engine, runs it on the calibration
// set, and records a histogram for each
// tensor of the distribution of activation values.
LOG_FIRST_N
(
INFO
,
1
)
<<
"The TRT engine: "
<<
engine_key_
<<
" is running calibration trt int8... "
;
int
runtime_batch
=
1
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
).
stream
();
if
(
!
Singleton
<
TRTCalibratorEngineManager
>::
Global
().
Has
(
engine_key_
))
{
TRTCalibratorEngine
*
calib_res
=
Singleton
<
TRTCalibratorEngineManager
>::
Global
().
Create
(
engine_key_
);
std
::
unordered_map
<
std
::
string
,
size_t
>
calib_buffers
;
for
(
auto
&
x
:
input_names_
)
{
if
(
param_names_
.
count
(
x
))
continue
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
x
);
calib_buffers
[
x
]
=
t
.
memory_size
();
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
runtime_batch
=
t_shape
[
0
];
}
calib_res
->
calib_
.
reset
(
new
TRTInt8Calibrator
(
calib_buffers
,
runtime_batch
,
engine_key_
,
dev_place
));
calib_res
->
thr_
.
reset
(
new
std
::
thread
([
&
]()
{
calib_res
->
engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
,
enable_int8_
,
calib_res
->
calib_
.
get
()));
VLOG
(
3
)
<<
"start the calib trt engine thread"
;
Prepare
(
scope
,
dev_place
,
calib_res
->
engine_
.
get
());
}));
}
TRTInt8Calibrator
*
temp_calibrator
=
Singleton
<
TRTCalibratorEngineManager
>::
Global
()
.
Get
(
engine_key_
)
->
calib_
.
get
();
std
::
unordered_map
<
std
::
string
,
void
*>
calib_data
;
for
(
auto
&
x
:
Inputs
(
"Xs"
))
{
if
(
param_names_
.
count
(
x
))
continue
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
x
);
calib_data
.
emplace
(
x
,
t
.
data
<
void
>
());
}
temp_calibrator
->
setBatch
(
calib_data
);
RunNativeImpl
(
scope
,
dev_place
);
}
void
RunTrt
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
int
runtime_batch
=
1
;
...
...
@@ -101,9 +188,10 @@ class TensorRTEngineOp : public framework::OperatorBase {
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
).
stream
();
if
(
trt_engine_
.
get
()
==
nullptr
)
{
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
));
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
,
enable_int8_
,
calibrator_
.
get
()));
Prepare
(
scope
,
dev_place
,
trt_engine_
.
get
());
}
...
...
@@ -173,7 +261,8 @@ class TensorRTEngineOp : public framework::OperatorBase {
void
Prepare
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
,
TensorRTEngine
*
engine
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
浏览文件 @
97b76c94
...
...
@@ -96,19 +96,20 @@ TEST(TensorRTEngineOp, manual) {
engine_op_desc
.
SetType
(
"tensorrt_engine"
);
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch_size"
,
2
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"workspace_size"
,
1
<<
20
);
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"engine_uniq_key"
,
"a_engine"
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"parameters"
,
std
::
vector
<
std
::
string
>
({}));
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
engine_op_desc
.
SetBlockAttr
(
"sub_block"
,
&
block_desc
);
engine_op_desc
.
SetAttr
(
"max_batch_size"
,
static_cast
<
int
>
(
2
));
engine_op_desc
.
SetAttr
(
"workspace_size"
,
static_cast
<
int
>
(
1
<<
20
));
engine_op_desc
.
SetAttr
(
"parameters"
,
std
::
vector
<
std
::
string
>
({}));
engine_op_desc
.
SetAttr
(
"engine_key"
,
std
::
string
(
"a_engine"
));
engine_op_desc
.
SetAttr
(
"calibration_data"
,
std
::
string
(
""
));
engine_op_desc
.
SetAttr
(
"enable_int8"
,
static_cast
<
bool
>
(
false
));
engine_op_desc
.
SetAttr
(
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
engine_op_desc
.
SetAttr
(
"subgraph"
,
std
::
string
(
block_
->
SerializeAsString
()));
LOG
(
INFO
)
<<
"create engine op"
;
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
()
);
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
engine_op_desc
);
LOG
(
INFO
)
<<
"engine_op "
<<
engine_op
.
get
();
framework
::
Scope
scope
;
...
...
@@ -190,20 +191,19 @@ void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x0"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch_size"
,
batch_size
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"workspace_size"
,
1
<<
20
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"parameters"
,
std
::
vector
<
std
::
string
>
({
"y0"
,
"y1"
,
"y2"
,
"y3"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"engine_uniq_key"
,
"b_engine"
);
SetAttr
<
std
::
vector
<
std
::
string
>>
(
engine_op_desc
.
Proto
(),
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
engine_op_desc
.
SetBlockAttr
(
"sub_block"
,
&
block_desc
);
engine_op_desc
.
SetAttr
(
"max_batch_size"
,
static_cast
<
int
>
(
batch_size
));
engine_op_desc
.
SetAttr
(
"workspace_size"
,
static_cast
<
int
>
(
1
<<
20
));
engine_op_desc
.
SetAttr
(
"parameters"
,
std
::
vector
<
std
::
string
>
({
"y0"
,
"y1"
,
"y2"
,
"y3"
}));
engine_op_desc
.
SetAttr
(
"engine_key"
,
std
::
string
(
"b_engine"
));
engine_op_desc
.
SetAttr
(
"calibration_data"
,
std
::
string
(
""
));
engine_op_desc
.
SetAttr
(
"enable_int8"
,
static_cast
<
bool
>
(
false
));
engine_op_desc
.
SetAttr
(
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
engine_op_desc
.
SetAttr
(
"subgraph"
,
std
::
string
(
block_
->
SerializeAsString
()));
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
engine_op_desc
);
// Execute them.
engine_op
->
Run
(
scope
,
place
);
...
...
paddle/fluid/pybind/inference_api.cc
浏览文件 @
97b76c94
...
...
@@ -180,8 +180,14 @@ void BindNativePredictor(py::module *m) {
}
void
BindAnalysisConfig
(
py
::
module
*
m
)
{
py
::
class_
<
AnalysisConfig
>
(
*
m
,
"AnalysisConfig"
)
.
def
(
py
::
init
<
const
AnalysisConfig
&>
())
py
::
class_
<
AnalysisConfig
>
analysis_config
(
*
m
,
"AnalysisConfig"
);
py
::
enum_
<
AnalysisConfig
::
Precision
>
(
analysis_config
,
"Precision"
)
.
value
(
"Float32"
,
AnalysisConfig
::
Precision
::
kFloat32
)
.
value
(
"Int8"
,
AnalysisConfig
::
Precision
::
kInt8
)
.
export_values
();
analysis_config
.
def
(
py
::
init
<
const
AnalysisConfig
&>
())
.
def
(
py
::
init
<
const
std
::
string
&>
())
.
def
(
py
::
init
<
const
std
::
string
&
,
const
std
::
string
&>
())
.
def
(
"set_model"
,
(
void
(
AnalysisConfig
::*
)(
const
std
::
string
&
))
&
...
...
@@ -215,7 +221,8 @@ void BindAnalysisConfig(py::module *m) {
.
def
(
"specify_input_name"
,
&
AnalysisConfig
::
specify_input_name
)
.
def
(
"enable_tensorrt_engine"
,
&
AnalysisConfig
::
EnableTensorRtEngine
,
py
::
arg
(
"workspace_size"
)
=
1
<<
20
,
py
::
arg
(
"max_batch_size"
)
=
1
,
py
::
arg
(
"min_subgraph_size"
)
=
3
)
py
::
arg
(
"min_subgraph_size"
)
=
3
,
py
::
arg
(
"precision_mode"
)
=
AnalysisConfig
::
Precision
::
kFloat32
)
.
def
(
"tensorrt_engine_enabled"
,
&
AnalysisConfig
::
tensorrt_engine_enabled
)
.
def
(
"switch_ir_debug"
,
&
AnalysisConfig
::
SwitchIrDebug
,
py
::
arg
(
"x"
)
=
true
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录