Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
95035908
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95035908
编写于
12月 13, 2016
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add CrossMapNormal
上级
529f24c2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
248 addition
and
65 deletion
+248
-65
paddle/math/cross_map_normal_op.cpp
paddle/math/cross_map_normal_op.cpp
+129
-0
paddle/math/cross_map_normal_op.h
paddle/math/cross_map_normal_op.h
+47
-0
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+72
-65
未找到文件。
paddle/math/cross_map_normal_op.cpp
0 → 100644
浏览文件 @
95035908
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "cross_map_normal_op.h"
namespace
paddle
{
// NCHW
void
CrossMapNormal
::
operator
()(
CpuMatrix
&
outputs
,
CpuMatrix
&
denoms
,
CpuMatrix
&
inputs
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
)
{
CHECK
(
outputs
.
isContiguous
());
CHECK
(
inputs
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK_EQ
(
outputs
.
getHeight
(),
inputs
.
getHeight
());
CHECK_EQ
(
outputs
.
getWidth
(),
inputs
.
getWidth
());
CHECK_EQ
(
outputs
.
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
outputs
.
getWidth
(),
denoms
.
getWidth
());
size_t
numSample
=
inputs
.
getHeight
();
size_t
numCols
=
inputs
.
getWidth
();
size_t
imageSize
=
imgSizeH
*
imgSizeW
;
CHECK
(
imageSize
*
channels
==
numCols
);
denoms
=
denoms
.
constant
(
1.0
);
const
int
start
=
-
((
int
)
sizeX
-
1
)
/
2
;
const
int
end
=
(
int
)
sizeX
+
start
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
real
*
denomsData
=
denoms
.
getData
()
+
i
*
numCols
;
real
*
inputData
=
inputs
.
getData
()
+
i
*
numCols
;
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
CpuVector
denom
(
imageSize
,
denomsData
+
c
*
imageSize
);
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
CpuVector
input
(
imageSize
,
inputData
+
(
c
+
s
)
*
imageSize
);
denom
+=
input
.
square
()
*
scale
;
}
}
}
}
outputs
=
inputs
*
denoms
.
pow
(
-
pow
);
}
void
CrossMapNormalGrad
::
operator
()(
CpuMatrix
&
inputsGrad
,
CpuMatrix
&
inputsValue
,
CpuMatrix
&
outputsGrad
,
CpuMatrix
&
outputsValue
,
CpuMatrix
&
denoms
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
)
{
CHECK
(
inputsGrad
.
isContiguous
());
CHECK
(
outputsGrad
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK
(
inputsValue
.
isContiguous
());
CHECK
(
outputsValue
.
isContiguous
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
outputsGrad
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
outputsGrad
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
denoms
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
inputsValue
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
inputsValue
.
getWidth
());
CHECK_EQ
(
inputsGrad
.
getHeight
(),
outputsValue
.
getHeight
());
CHECK_EQ
(
inputsGrad
.
getWidth
(),
outputsValue
.
getWidth
());
size_t
numSample
=
inputsGrad
.
getHeight
();
size_t
numCols
=
inputsGrad
.
getWidth
();
size_t
imageSize
=
imgSizeH
*
imgSizeW
;
CHECK
(
imageSize
*
channels
==
numCols
);
std
::
function
<
CpuVector
(
real
*
,
size_t
)
>
oneImage
=
[
=
](
real
*
data
,
size_t
offset
)
{
return
CpuVector
(
imageSize
,
data
+
offset
);
};
const
int
start
=
-
((
int
)
sizeX
)
/
2
;
const
int
end
=
(
int
)
sizeX
+
start
;
const
real
ratio
=
-
(
real
)
2
*
scale
*
pow
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
size_t
sOffset
=
i
*
numCols
;
real
*
inputGradData
=
inputsGrad
.
getData
()
+
sOffset
;
real
*
inputData
=
inputsValue
.
getData
()
+
sOffset
;
real
*
denomData
=
denoms
.
getData
()
+
sOffset
;
real
*
outputGradData
=
outputsGrad
.
getData
()
+
sOffset
;
real
*
outputData
=
outputsValue
.
getData
()
+
sOffset
;
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
size_t
cOffset
=
c
*
imageSize
;
CpuVector
inputGrad
=
oneImage
(
inputGradData
,
cOffset
);
CpuVector
inputValue
=
oneImage
(
inputData
,
cOffset
);
CpuVector
denom
=
oneImage
(
denomData
,
cOffset
);
CpuVector
outputGrad
=
oneImage
(
outputGradData
,
cOffset
);
inputGrad
=
inputGrad
+
denom
.
pow
(
-
pow
)
*
outputGrad
;
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
size_t
offset
=
(
c
+
s
)
*
imageSize
;
CpuVector
output
=
oneImage
(
outputData
,
offset
);
CpuVector
outputGrad
=
oneImage
(
outputGradData
,
offset
);
CpuVector
denom
=
oneImage
(
denomData
,
offset
);
inputGrad
+=
((
outputGrad
*
output
*
ratio
)
/
denom
)
*
inputValue
;
}
}
}
}
}
}
// namespace paddle
paddle/math/cross_map_normal_op.h
0 → 100644
浏览文件 @
95035908
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/math/Matrix.h"
namespace
paddle
{
struct
CrossMapNormal
{
void
operator
()(
CpuMatrix
&
outputs
,
CpuMatrix
&
denoms
,
CpuMatrix
&
inputs
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
);
};
struct
CrossMapNormalGrad
{
void
operator
()(
CpuMatrix
&
inputsGrad
,
CpuMatrix
&
inputsValue
,
CpuMatrix
&
outputsGrad
,
CpuMatrix
&
outputsValue
,
CpuMatrix
&
denoms
,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
sizeX
,
real
scale
,
real
pow
);
};
}
// namespace paddle
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
95035908
...
...
@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/gserver/tests/TestUtil.h"
#include "paddle/utils/Stat.h"
#include "TensorCheck.h"
#include "paddle/math/cross_map_normal_op.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
...
...
@@ -1261,30 +1262,32 @@ TEST(Matrix, MaxOutFwdBwd) {
}
}
}
void
testCrossMapNormalFwd
(
int
numSamples
,
int
channels
,
int
imgSizeH
,
int
imgSizeW
,
int
sizeX
)
{
float
scale
=
1.5
;
float
pow
=
0.5
;
int
width
=
imgSizeH
*
imgSizeW
*
channels
;
MatrixPtr
input
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
denorms
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
target
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
inputGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
denormsGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
targetGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
input
->
randomizeUniform
();
target
->
randomizeUniform
();
inputGpu
->
copyFrom
(
*
input
);
targetGpu
->
copyFrom
(
*
target
);
target
->
crossMapNormalFwd
(
*
input
,
imgSizeH
,
imgSizeW
,
*
denorms
,
channels
,
sizeX
,
scale
,
pow
);
targetGpu
->
crossMapNormalFwd
(
*
inputGpu
,
imgSizeH
,
imgSizeW
,
*
denormsGpu
,
channels
,
sizeX
,
scale
,
pow
);
TensorCheckErr
(
*
target
,
*
targetGpu
);
TensorCheckErr
(
*
denorms
,
*
denormsGpu
);
CpuMatrix
inputs
(
numSamples
,
width
);
CpuMatrix
denoms
(
numSamples
,
width
);
CpuMatrix
outputs
(
numSamples
,
width
);
GpuMatrix
inputsGpu
(
numSamples
,
width
);
GpuMatrix
denomsGpu
(
numSamples
,
width
);
GpuMatrix
outputsGpu
(
numSamples
,
width
);
inputs
.
randomizeUniform
();
outputs
.
randomizeUniform
();
inputsGpu
.
copyFrom
(
inputs
);
outputsGpu
.
copyFrom
(
outputs
);
CrossMapNormal
cross
;
cross
(
outputs
,
denoms
,
inputs
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
outputsGpu
.
crossMapNormalFwd
(
inputsGpu
,
imgSizeH
,
imgSizeW
,
denomsGpu
,
channels
,
sizeX
,
scale
,
pow
);
TensorCheckErr
(
outputs
,
outputsGpu
);
TensorCheckErr
(
denoms
,
denomsGpu
);
}
TEST
(
Matrix
,
crossMapNormalFwd
)
{
...
...
@@ -1310,53 +1313,57 @@ void testCrossMapNormalBwd(
float
scale
=
1.5
;
float
pow
=
0.5
;
size_t
width
=
imgSizeH
*
imgSizeW
*
channels
;
MatrixPtr
localGrad
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
denoms
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
output
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
preOutV
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
localOutV
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
localGrad
->
randomizeUniform
();
denoms
->
randomizeUniform
();
preOutV
->
randomizeUniform
();
localOutV
->
randomizeUniform
();
output
->
randomizeUniform
();
denoms
->
add
(
0.01
);
MatrixPtr
localGradGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
denomsGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
outputGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
preOutVGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
localOutVGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
localGradGpu
->
copyFrom
(
*
localGrad
);
denomsGpu
->
copyFrom
(
*
denoms
);
preOutVGpu
->
copyFrom
(
*
preOutV
);
localOutVGpu
->
copyFrom
(
*
localOutV
);
outputGpu
->
copyFrom
(
*
output
);
output
->
crossMapNormalBwd
(
*
localGrad
,
*
denoms
,
*
preOutV
,
*
localOutV
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
outputGpu
->
crossMapNormalBwd
(
*
localGradGpu
,
*
denomsGpu
,
*
preOutVGpu
,
*
localOutVGpu
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
TensorCheckErr
(
*
output
,
*
outputGpu
);
CpuMatrix
inputsGrad
(
numSamples
,
width
);
CpuMatrix
inputsValue
(
numSamples
,
width
);
CpuMatrix
outputsGrad
(
numSamples
,
width
);
CpuMatrix
outputsValue
(
numSamples
,
width
);
CpuMatrix
denoms
(
numSamples
,
width
);
outputsGrad
.
randomizeUniform
();
denoms
.
randomizeUniform
();
inputsValue
.
randomizeUniform
();
outputsValue
.
randomizeUniform
();
inputsGrad
.
randomizeUniform
();
denoms
.
add
(
0.01
);
GpuMatrix
inputsGradGpu
(
numSamples
,
width
);
GpuMatrix
inputsValueGpu
(
numSamples
,
width
);
GpuMatrix
outputsGradGpu
(
numSamples
,
width
);
GpuMatrix
outputsValueGpu
(
numSamples
,
width
);
GpuMatrix
denomsGpu
(
numSamples
,
width
);
outputsGradGpu
.
copyFrom
(
outputsGrad
);
denomsGpu
.
copyFrom
(
denoms
);
inputsValueGpu
.
copyFrom
(
inputsValue
);
outputsValueGpu
.
copyFrom
(
outputsValue
);
inputsGradGpu
.
copyFrom
(
inputsGrad
);
CrossMapNormalGrad
cross
;
cross
(
inputsGrad
,
inputsValue
,
outputsGrad
,
outputsValue
,
denoms
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
inputsGradGpu
.
crossMapNormalBwd
(
outputsGradGpu
,
denomsGpu
,
inputsValueGpu
,
outputsValueGpu
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
TensorCheckErr
(
inputsGrad
,
inputsGradGpu
);
}
TEST
(
Matrix
,
crossMapNormalBwd
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录