Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
944bdee7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
944bdee7
编写于
6月 06, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into multithreads
上级
9b34f8da
9dc3ed40
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
195 addition
and
15 deletion
+195
-15
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+6
-0
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
+68
-0
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass_tester.cc
...fluid/inference/analysis/dfg_graphviz_draw_pass_tester.cc
+46
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+75
-15
未找到文件。
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
944bdee7
...
...
@@ -15,3 +15,9 @@ cc_test(test_subgraph_splitter
DEPS analysis paddle_fluid tensor
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
)
set_tests_properties
(
test_subgraph_splitter PROPERTIES DEPENDS test_word2vec
)
cc_test
(
test_dfg_graphviz_draw_pass
SRCS dfg_graphviz_draw_pass_tester.cc
DEPS analysis
ARGS --inference_model_dir=
${
PYTHON_TESTS_DIR
}
/book/word2vec.inference.model
)
set_tests_properties
(
test_dfg_graphviz_draw_pass PROPERTIES DEPENDS test_word2vec
)
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h
0 → 100644
浏览文件 @
944bdee7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file create an DFG_GraphvizDrawPass which helps to draw a data flow
* graph's structure using graphviz.
*/
#pragma once
#include <fstream>
#include <string>
#include "paddle/fluid/inference/analysis/pass.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
/*
* Output a dot file and write to some place.
*/
class
DFG_GraphvizDrawPass
:
public
DataFlowGraphPass
{
public:
DFG_GraphvizDrawPass
(
const
std
::
string
&
dir
,
const
std
::
string
&
id
)
:
dir_
(
dir
),
id_
(
id
)
{}
bool
Initialize
()
override
{
return
Pass
::
Initialize
();
}
void
Run
(
DataFlowGraph
*
graph
)
override
{
auto
content
=
Draw
(
graph
);
std
::
ofstream
file
(
GenDotPath
());
file
.
write
(
content
.
c_str
(),
content
.
size
());
file
.
close
();
LOG
(
INFO
)
<<
"draw dot to "
<<
GenDotPath
();
}
bool
Finalize
()
override
{
return
Pass
::
Finalize
();
}
Pass
*
CreatePrinterPass
(
std
::
ostream
&
os
,
const
std
::
string
&
banner
)
const
override
{
return
nullptr
;
}
private:
// Path of the dot file to output.
std
::
string
GenDotPath
()
const
{
return
dir_
+
"/"
+
"graph_"
+
id_
+
".dot"
;
}
std
::
string
Draw
(
DataFlowGraph
*
graph
)
{
return
graph
->
DotString
();
}
std
::
string
dir_
;
std
::
string
id_
;
};
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/dfg_graphviz_draw_pass_tester.cc
0 → 100644
浏览文件 @
944bdee7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include <gtest/gtest.h>
#include <fstream>
#include <string>
#include "paddle/fluid/inference/analysis/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
TEST_F
(
DFG_Tester
,
dfg_graphviz_draw_pass_tester
)
{
auto
dfg
=
ProgramDescToDFG
(
desc
);
DFG_GraphvizDrawPass
pass
(
"./"
,
"test"
);
pass
.
Initialize
();
pass
.
Run
(
&
dfg
);
// test content
std
::
ifstream
file
(
"./graph_test.dot"
);
ASSERT_TRUE
(
file
.
is_open
());
std
::
string
line
;
int
no
{
0
};
while
(
std
::
getline
(
file
,
line
))
{
no
++
;
}
ASSERT_EQ
(
no
,
82
);
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
944bdee7
...
...
@@ -81,6 +81,8 @@ __all__ = [
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'random_crop'
,
...
...
@@ -3929,22 +3931,25 @@ def dice_loss(input, label, epsilon=0.00001):
return
reduce_mean
(
dice_score
)
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
def
image_resize
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
,
resample
=
'BILINEAR'
):
"""
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
Resize a batch of images.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
and the resizing only applies on the last two dimensions(hight and width).
Supporting resample methods:
'BILINEAR' : Bilinear interpolation
Args:
input (Variable): The input tensor of
resize bilinear
layer,
input (Variable): The input tensor of
image resize
layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_shape(list|tuple|Variable|None): Output shape of
resize bilinear
out_shape(list|tuple|Variable|None): Output shape of
image resize
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width.
...
...
@@ -3953,6 +3958,8 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
resample(str): The resample method. It can only be 'BILINEAR' currently.
Default: 'BILINEAR'
Returns:
out (Variable): The output is a 4-D tensor of the shape
...
...
@@ -3961,8 +3968,12 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
Examples:
.. code-block:: python
out = fluid.layers.
resize_bilinear
(input, out_shape=[12, 12])
out = fluid.layers.
image_resize
(input, out_shape=[12, 12])
"""
resample_methods
=
{
'BILINEAR'
:
'bilinear_interp'
}
if
resample
not
in
resample_methods
:
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR' currently."
)
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None"
)
helper
=
LayerHelper
(
'bilinear_interp'
,
**
locals
())
...
...
@@ -3990,7 +4001,7 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"bilinear_interp"
,
type
=
resample_methods
[
resample
]
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
{
"out_h"
:
out_h
,
...
...
@@ -3998,6 +4009,55 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
return
out
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
"""
This is an alias of layer 'image_resize' with bilinear interpolation.
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
"""
Resize a batch of images. The short edge of input images will be
resized to the given 'out_short_len'. The long edge of input images
will be resized proportionately to make images' length-width ratio
constant.
Args:
input (Variable): The input tensor of image resize layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_short_len(int): The length of output images' short edge.
Returns:
out (Variable): The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
"""
in_shape
=
input
.
shape
if
len
(
in_shape
)
!=
4
:
raise
ValueError
(
"The rank of input must be 4 (num_batches, channels, in_h, in_w)."
)
hw
=
in_shape
[
2
:
4
]
short_idx
=
hw
.
index
(
min
(
hw
))
long_idx
=
1
-
short_idx
out_shape
=
list
(
hw
)
out_shape
[
short_idx
]
=
out_short_len
out_shape
[
long_idx
]
=
int
(
float
(
out_shape
[
long_idx
])
*
(
float
(
out_short_len
)
/
float
(
hw
[
short_idx
]))
+
0.5
)
return
image_resize
(
input
=
input
,
out_shape
=
out_shape
,
resample
=
resample
)
def
gather
(
input
,
index
):
"""
Output is obtained by gathering entries of the outer-most dimension
...
...
@@ -4005,7 +4065,7 @@ def gather(input, index):
.. math::
Out = X[Index]
Out = X[Index]
.. code-block:: text
...
...
@@ -4013,8 +4073,8 @@ def gather(input, index):
Given:
X = [[1, 2],
[3, 4],
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [1, 2]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录