Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
92e7d5d7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
92e7d5d7
编写于
5月 23, 2019
作者:
Q
Qiao Longfei
提交者:
GitHub
5月 23, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix distribute doc test=develop (#17318)
* fix distribute doc
上级
c1aae8b8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
50 addition
and
12 deletion
+50
-12
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+12
-4
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+1
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+35
-6
未找到文件。
paddle/fluid/API.spec
浏览文件 @
92e7d5d7
...
...
@@ -26,7 +26,7 @@ paddle.fluid.DistributeTranspiler.get_pserver_program (ArgSpec(args=['self', 'en
paddle.fluid.DistributeTranspiler.get_pserver_programs (ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None), ('document', '78f4949aedf317666a89ca74b3748ba8'))
paddle.fluid.DistributeTranspiler.get_startup_program (ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'd796fc0c8d51503b556fcf6dc15c4f0c'))
paddle.fluid.DistributeTranspiler.get_trainer_program (ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,)), ('document', '736330e31a7a54abccc0c7fd9119d9ff'))
paddle.fluid.DistributeTranspiler.transpile (ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program', 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174')), ('document', '
06ce55338dfe96311ad1078235ab3bf4
'))
paddle.fluid.DistributeTranspiler.transpile (ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program', 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174')), ('document', '
418c7e8b268e9be4104f2809e654c2f7
'))
paddle.fluid.memory_optimize (ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level', 'skip_grads'], varargs=None, keywords=None, defaults=(None, False, 0, False)), ('document', '97fdf61cf1ed4fb8f6a4b58aebce26a2'))
paddle.fluid.release_memory (ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b524b73e10f9ccdfa6d189e2e535fc17'))
paddle.fluid.DistributeTranspilerConfig.__init__
...
...
@@ -427,7 +427,7 @@ paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program (ArgSpec(args=[
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs (ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None), ('document', '78f4949aedf317666a89ca74b3748ba8'))
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program (ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'd796fc0c8d51503b556fcf6dc15c4f0c'))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program (ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,)), ('document', '736330e31a7a54abccc0c7fd9119d9ff'))
paddle.fluid.transpiler.DistributeTranspiler.transpile (ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program', 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174')), ('document', '
06ce55338dfe96311ad1078235ab3bf4
'))
paddle.fluid.transpiler.DistributeTranspiler.transpile (ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program', 'current_endpoint'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None, '127.0.0.1:6174')), ('document', '
418c7e8b268e9be4104f2809e654c2f7
'))
paddle.fluid.transpiler.memory_optimize (ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level', 'skip_grads'], varargs=None, keywords=None, defaults=(None, False, 0, False)), ('document', '97fdf61cf1ed4fb8f6a4b58aebce26a2'))
paddle.fluid.transpiler.release_memory (ArgSpec(args=['input_program', 'skip_opt_set'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b524b73e10f9ccdfa6d189e2e535fc17'))
paddle.fluid.transpiler.HashName.__init__ (ArgSpec(args=['self', 'pserver_endpoints'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
92e7d5d7
...
...
@@ -1209,15 +1209,23 @@ All parameter, weight, gradient are variables in Paddle.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 4
train_exe = fluid.ParallelExecutor(use_cuda=
Tru
e,
loss_name=loss.name,
train_exe = fluid.ParallelExecutor(use_cuda=
Fals
e,
loss_name=
avg_
loss.name,
exec_strategy=exec_strategy)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC"
);
exec_strategy
.
def
(
py
::
init
())
...
...
python/paddle/fluid/initializer.py
浏览文件 @
92e7d5d7
...
...
@@ -824,6 +824,7 @@ class NumpyArrayInitializer(Initializer):
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[5], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
"""
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
92e7d5d7
...
...
@@ -146,6 +146,11 @@ class DistributeTranspilerConfig(object):
We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you have read the slice_variable function.
Examples:
.. code-block:: python
config = fluid.DistributeTranspilerConfig()
config.slice_var_up = True
"""
slice_var_up
=
True
...
...
@@ -181,13 +186,23 @@ class DistributeTranspiler(object):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
# for pserver mode
pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
current_endpoint = "192.168.0.1:6174"
trainer_id = 0
trainers = 4
role =
os.getenv("PADDLE_TRAINING_ROLE")
role =
"PSERVER"
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
...
...
@@ -199,14 +214,17 @@ class DistributeTranspiler(object):
trainer_program = t.get_trainer_program()
# for nccl2 mode
trainer_num = 2
trainer_id = 0
config = fluid.DistributeTranspilerConfig()
config.mode = "nccl2"
trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
t = fluid.DistributeTranspiler(config=config)
t.transpile(trainer_id
, workers=workers, current_endpoint=curr_ep
)
t.transpile(trainer_id
=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174"
)
exe = fluid.ParallelExecutor(
use_cuda,
loss_name=
loss_var
.name,
num_trainers=
len(trainers.split(",))
,
use_cuda
=True
,
loss_name=
avg_loss
.name,
num_trainers=
trainer_num
,
trainer_id=trainer_id
)
"""
...
...
@@ -289,7 +307,7 @@ class DistributeTranspiler(object):
startup_program
=
None
,
current_endpoint
=
"127.0.0.1:6174"
):
"""
Run the transpiler.
Run the transpiler.
Transpile the input program.
Args:
trainer_id (int): id for current trainer worker, if you have
...
...
@@ -309,6 +327,17 @@ class DistributeTranspiler(object):
current_endpoint (str): need pass current endpoint when
transpile as nccl2 distributed mode. In pserver mode
this argument is not used.
Examples:
.. code-block:: python
transpiler = fluid.DistributeTranspiler()
t.transpile(
trainer_id=0,
pservers="127.0.0.1:7000,127.0.0.1:7001",
trainers=2,
sync_mode=False,
current_endpoint="127.0.0.1:7000")
"""
if
program
is
None
:
program
=
default_main_program
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录