Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
91b401d1
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91b401d1
编写于
5月 14, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add backbone, cspresnet
上级
3275c1b4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
339 addition
and
0 deletion
+339
-0
ppdet/modeling/backbones/cspresnet.py
ppdet/modeling/backbones/cspresnet.py
+339
-0
未找到文件。
ppdet/modeling/backbones/cspresnet.py
0 → 100644
浏览文件 @
91b401d1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
collections
import
OrderedDict
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.initializer
import
Constant
from
ppdet.core.workspace
import
register
,
serializable
from
numbers
import
Integral
from
.nonlocal_helper
import
add_space_nonlocal
from
.gc_block
import
add_gc_block
from
.name_adapter
import
NameAdapter
__all__
=
[
'CSPResNet'
]
@
register
@
serializable
class
CSPResNet
(
object
):
"""
CSPDarkNet, see https://arxiv.org/abs/1911.11929
Args:
depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
freeze_at (int): freeze the backbone at which stage
norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
freeze_norm (bool): freeze normalization layers
norm_decay (float): weight decay for normalization layer weights
feature_maps (list): index of stages whose feature maps are returned
weight_prefix_name (str): prefix name of the weights
"""
__shared__
=
[
'norm_type'
,
'freeze_norm'
,
'weight_prefix_name'
]
def
__init__
(
self
,
depth
=
50
,
freeze_at
=
2
,
norm_type
=
'bn'
,
freeze_norm
=
True
,
norm_decay
=
0.
,
feature_maps
=
[
2
,
3
,
4
,
5
],
weight_prefix_name
=
''
):
super
(
CSPResNet
,
self
).
__init__
()
if
isinstance
(
feature_maps
,
Integral
):
feature_maps
=
[
feature_maps
]
assert
depth
in
[
50
,
101
],
\
"depth {} not in [50, 101]"
assert
0
<=
freeze_at
<=
4
,
"freeze_at should be 0, 1, 2, 3 or 4"
assert
len
(
feature_maps
)
>
0
,
"need one or more feature maps"
assert
norm_type
in
[
'bn'
,
'sync_bn'
,
'affine_channel'
]
self
.
depth
=
depth
self
.
freeze_at
=
freeze_at
self
.
norm_type
=
norm_type
self
.
norm_decay
=
norm_decay
self
.
freeze_norm
=
freeze_norm
self
.
_model_type
=
'CSPResNet'
self
.
feature_maps
=
feature_maps
self
.
depth_cfg
=
{
50
:
([
3
,
3
,
5
,
2
],
self
.
bottleneck
),
101
:
([
3
,
3
,
22
,
2
],
self
.
bottleneck
),
}
self
.
stage_filters
=
[
64
,
128
,
256
,
512
]
self
.
prefix_name
=
weight_prefix_name
self
.
end_points
=
[]
def
net
(
self
,
input
):
depth
=
self
.
depth_cfg
[
self
.
depth
][
0
]
block_func
=
self
.
depth_cfg
[
self
.
depth
][
1
]
num_filters
=
self
.
stage_filters
conv
=
self
.
_conv_norm
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'leaky'
,
name
=
"conv1"
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
)
if
block
!=
0
:
conv
=
self
.
_conv_norm
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
filter_size
=
3
,
stride
=
2
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_downsample"
)
# split
left
=
conv
right
=
conv
if
block
==
0
:
ch
=
num_filters
[
block
]
else
:
ch
=
num_filters
[
block
]
*
2
right
=
self
.
_conv_norm
(
input
=
right
,
num_filters
=
ch
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_right_first_route"
)
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
right
=
self
.
bottleneck
(
input
=
right
,
num_filters
=
num_filters
[
block
],
stride
=
1
,
name
=
conv_name
)
# route
left
=
self
.
_conv_norm
(
input
=
left
,
num_filters
=
num_filters
[
block
]
*
2
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_left_route"
)
right
=
self
.
_conv_norm
(
input
=
right
,
num_filters
=
num_filters
[
block
]
*
2
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_right_route"
)
conv
=
fluid
.
layers
.
concat
([
left
,
right
],
axis
=
1
)
conv
=
self
.
_conv_norm
(
input
=
conv
,
num_filters
=
num_filters
[
block
]
*
2
,
filter_size
=
1
,
stride
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_merged_transition"
)
self
.
end_points
.
append
(
conv
)
return
def
_conv_norm
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
,
dcn_v2
=
False
):
_name
=
self
.
prefix_name
+
name
if
self
.
prefix_name
!=
''
else
name
lr_mult
=
1.0
if
not
dcn_v2
:
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
_name
+
"_weights"
,
learning_rate
=
lr_mult
),
bias_attr
=
False
,
name
=
_name
+
'.conv2d.output.1'
)
else
:
# select deformable conv"
offset_mask
=
self
.
_conv_offset
(
input
=
input
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
act
=
None
,
name
=
_name
+
"_conv_offset"
)
offset_channel
=
filter_size
**
2
*
2
mask_channel
=
filter_size
**
2
offset
,
mask
=
fluid
.
layers
.
split
(
input
=
offset_mask
,
num_or_sections
=
[
offset_channel
,
mask_channel
],
dim
=
1
)
mask
=
fluid
.
layers
.
sigmoid
(
mask
)
conv
=
fluid
.
layers
.
deformable_conv
(
input
=
input
,
offset
=
offset
,
mask
=
mask
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
deformable_groups
=
1
,
im2col_step
=
1
,
param_attr
=
ParamAttr
(
name
=
_name
+
"_weights"
,
learning_rate
=
lr_mult
),
bias_attr
=
False
,
name
=
_name
+
".conv2d.output.1"
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
bn_name
=
self
.
prefix_name
+
bn_name
if
self
.
prefix_name
!=
''
else
bn_name
norm_lr
=
0.
if
self
.
freeze_norm
else
lr_mult
norm_decay
=
self
.
norm_decay
pattr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
bn_name
+
'_offset'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
if
self
.
norm_type
in
[
'bn'
,
'sync_bn'
]:
global_stats
=
True
if
self
.
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
None
,
name
=
bn_name
+
'.output.1'
,
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
self
.
norm_type
==
'affine_channel'
:
scale
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
pattr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
battr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.
))
out
=
fluid
.
layers
.
affine_channel
(
x
=
conv
,
scale
=
scale
,
bias
=
bias
,
act
=
None
)
if
self
.
freeze_norm
:
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
if
act
==
"relu"
:
out
=
fluid
.
layers
.
relu
(
out
)
elif
act
==
"leaky_relu"
:
out
=
fluid
.
layers
.
leaky_relu
(
out
)
return
out
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
is_first
,
name
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
or
is_first
is
True
:
return
self
.
_conv_norm
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
input
def
bottleneck
(
self
,
input
,
num_filters
,
stride
,
name
):
conv0
=
self
.
_conv_norm
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
name
+
"_branch2a"
)
conv1
=
self
.
_conv_norm
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
"leaky_relu"
,
name
=
name
+
"_branch2b"
)
conv2
=
self
.
_conv_norm
(
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
short
=
self
.
shortcut
(
input
,
num_filters
*
2
,
stride
,
is_first
=
False
,
name
=
name
+
"_branch1"
)
ret
=
short
+
conv2
ret
=
fluid
.
layers
.
leaky_relu
(
ret
,
alpha
=
0.1
)
return
ret
def
__call__
(
self
,
input
):
assert
isinstance
(
input
,
Variable
)
assert
not
(
set
(
self
.
feature_maps
)
-
set
([
2
,
3
,
4
,
5
])),
\
"feature maps {} not in [2, 3, 4, 5]"
.
format
(
self
.
feature_maps
)
res_endpoints
=
[]
res
=
input
feature_maps
=
self
.
feature_maps
self
.
net
(
input
)
for
i
in
feature_maps
:
res
=
self
.
end_points
[
i
-
2
]
if
i
in
self
.
feature_maps
:
res_endpoints
.
append
(
res
)
if
self
.
freeze_at
>=
i
:
res
.
stop_gradient
=
True
return
OrderedDict
(
[(
'cspres{}_sum'
.
format
(
self
.
feature_maps
[
idx
]),
feat
)
for
idx
,
feat
in
enumerate
(
res_endpoints
)])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录