提交 904fa05f 编写于 作者: X Xin Pan

Improve layer_norm speed

    transfomer on a single device step time
    reduces from 0.157 to 0.125
上级 898e0ffa
......@@ -22,6 +22,99 @@ limitations under the License. */
namespace paddle {
namespace operators {
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor* vec);
};
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
public:
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
: left_(left), right_(right) {
framework::DDim ones_dim({right_});
divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
math::set_constant(dev_ctx, &divisor_, 1.0 / right);
}
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input, framework::Tensor* out) {
math::gemv<platform::CUDADeviceContext, T>(
context, false, left_, right_, 1., input.data<T>(), divisor_.data<T>(),
0., out->data<T>());
}
private:
int left_;
int right_;
framework::Tensor divisor_;
};
template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
public:
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& input, framework::Tensor* out) {
row_mean_(context, input, out);
}
private:
math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};
template <typename DeviceContext, typename T>
struct ColwiseSum2D {
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor* vec);
};
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
public:
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
: left_(left), right_(right) {
framework::DDim ones_dim({left_});
divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
math::set_constant(dev_ctx, &divisor_, 1.0);
}
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input, framework::Tensor* out) {
math::gemv<platform::CUDADeviceContext, T>(
context, true, left_, right_, 1., input.data<T>(), divisor_.data<T>(),
0., out->data<T>());
}
private:
int left_;
int right_;
framework::Tensor divisor_;
};
template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
public:
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& input, framework::Tensor* out) {
col_wise_(context, input, out);
}
private:
math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};
template <typename T>
struct SubAndSquareFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
......@@ -67,15 +160,15 @@ using DataLayout = framework::DataLayout;
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
void Compute(const framework::ExecutionContext& ctx) const override {
const float epsilon = ctx.Attr<float>("epsilon");
auto *scale = ctx.Input<Tensor>("Scale");
auto *bias = ctx.Input<Tensor>("Bias");
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto x = *ctx.Input<Tensor>("X");
auto *y = ctx.Output<Tensor>("Y");
auto *mean = ctx.Output<Tensor>("Mean");
auto *var = ctx.Output<Tensor>("Variance");
auto* y = ctx.Output<Tensor>("Y");
auto* mean = ctx.Output<Tensor>("Mean");
auto* var = ctx.Output<Tensor>("Variance");
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
const auto x_dims = x.dims();
......@@ -94,8 +187,8 @@ class LayerNormKernel : public framework::OpKernel<T> {
out.ShareDataWith(*y);
out.Resize(matrix_shape);
auto &dev_ctx = ctx.template device_context<DeviceContext>();
math::RowwiseMean<DeviceContext, T> row_mean;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
// get mean
row_mean(dev_ctx, x, mean);
......@@ -126,31 +219,32 @@ class LayerNormKernel : public framework::OpKernel<T> {
template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
void Compute(const framework::ExecutionContext& ctx) const override {
const float epsilon = ctx.Attr<float>("epsilon");
auto x = *ctx.Input<Tensor>("X");
auto *y = ctx.Input<Tensor>("Y");
auto *mean = ctx.Input<Tensor>("Mean");
auto *var = ctx.Input<Tensor>("Variance");
auto *scale = ctx.Input<Tensor>("Scale");
auto *bias = ctx.Input<Tensor>("Bias");
auto* y = ctx.Input<Tensor>("Y");
auto* mean = ctx.Input<Tensor>("Mean");
auto* var = ctx.Input<Tensor>("Variance");
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
// init output
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const auto &x_dims = x.dims();
const auto& x_dims = x.dims();
auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
int left = static_cast<int>(matrix_dim[0]);
int right = static_cast<int>(matrix_dim[1]);
framework::DDim matrix_shape({left, right});
d_y.Resize(matrix_shape);
auto &dev_ctx = ctx.template device_context<DeviceContext>();
math::ColwiseSum<DeviceContext, T> colwise_sum;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
ctx.device_context());
Tensor temp;
Tensor temp_norm;
......@@ -190,7 +284,8 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
Tensor temp_vec;
temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());
math::RowwiseMean<DeviceContext, T> row_mean;
RowwiseMean2D<DeviceContext, T> row_mean(left, right,
ctx.device_context());
if (d_scale) {
// dy_dx
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册