Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
8f59d79d
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8f59d79d
编写于
6月 15, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update doc for sigmoid_cross_entropy_with_logits
上级
5b50307b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
2 addition
and
2 deletion
+2
-2
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc
...e/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc
+2
-2
未找到文件。
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc
浏览文件 @
8f59d79d
...
...
@@ -113,14 +113,14 @@ The logistic loss is given as follows:
$$loss = -Labels * \log(\sigma(X)) - (1 - Labels) * \log(1 - \sigma(X))$$
We know that $$\sigma(X) =
(1 / (1 + \exp(-X)))
$$. By substituting this we get:
We know that $$\sigma(X) =
\\frac{1}{1 + \exp(-X)}
$$. By substituting this we get:
$$loss = X - X * Labels + \log(1 + \exp(-X))$$
For stability and to prevent overflow of $$\exp(-X)$$ when X < 0,
we reformulate the loss as follows:
$$loss = \max(X, 0) - X * Labels + \log(1 + \exp(-
|X
|))$$
$$loss = \max(X, 0) - X * Labels + \log(1 + \exp(-
\|X\
|))$$
Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
However the output only shares the LoD with input `X`.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录