提交 8efde75a 编写于 作者: W wangguanzhong 提交者: GitHub

refine GET_STARTED doc (#3687)

上级 c53882a0
......@@ -4,93 +4,92 @@ For setting up the running environment, please refer to [installation
instructions](INSTALL.md).
## Training
#### Single-GPU Training
## Training/Evaluation/Inference
PaddleDetection provides scripots for training, evalution and inference with various features according to different configure.
```bash
export CUDA_VISIBLE_DEVICES=0
# set PYTHONPATH
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
#### Multi-GPU Training
```bash
# training in single-GPU and multi-GPU. specify different GPU numbers by CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
# GPU evalution
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
# Inference
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
```
#### CPU Training
### Optional argument list
```bash
export CPU_NUM=8
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml -o use_gpu=false
```
list below can be viewed by `--help`
##### Optional arguments
| FLAG | script supported | description | default | remark |
| :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: |
| -c | ALL | Select config file | None | **The whole description of configure can refer to [config_example](config_example)** |
| -o | ALL | Set parameters in configure file | None | `-o` has higher priority to file configured by `-c`. Such as `-o use_gpu=False max_iter=10000` |
| -r/--resume_checkpoint | train | Checkpoint path for resuming training | None | `-r output/faster_rcnn_r50_1x/10000` |
| --eval | train | Whether to perform evaluation in training | False | |
| --output_eval | train/eval | json path in evalution | current path | `--output_eval ./json_result` |
| -d/--dataset_dir | train/eval | path for dataset, same as dataset_dir in configs | None | `-d dataset/coco` |
| --fp16 | train | Whether to enable mixed precision training | False | GPU training is required |
| --loss_scale | train | Loss scaling factor for mixed precision training | 8.0 | enable when `--fp16` is True |
| --json_eval | eval | Whether to evaluate with already existed bbox.json or mask.json | False | json path is set in `--output_eval` |
| --output_dir | infer | Directory for storing the output visualization files | `./output` | `--output_dir output` |
| --draw_threshold | infer | Threshold to reserve the result for visualization | 0.5 | `--draw_threshold 0.7` |
| --save\_inference_model | infer | Whether to save inference model in output_dir | False | save_inference_model is saved in `--output_dir` |
| --infer_dir | infer | Directory for images to perform inference on | None | |
| --infer_img | infer | Image path | None | higher priority over --infer_dir |
| --use_tb | train/infer | Whether to record the data with [tb-paddle](https://github.com/linshuliang/tb-paddle), so as to display in Tensorboard | False | |
| --tb\_log_dir | train/infer | tb-paddle logging directory for image | train:`tb_log_dir/scalar` infer: `tb_log_dir/image` | |
- `-r` or `--resume_checkpoint`: Checkpoint path for resuming training. Such as: `-r output/faster_rcnn_r50_1x/10000`
- `--eval`: Whether to perform evaluation in training, default is `False`
- `--output_eval`: If perform evaluation in training, this edits evaluation directory, default is current directory.
- `-d` or `--dataset_dir`: Dataset path, same as `dataset_dir` of configs. Such as: `-d dataset/coco`
- `-c`: Select config file and all files are saved in `configs/`
- `-o`: Set configuration options in config file. Such as: `-o max_iters=180000`. `-o` has higher priority to file configured by `-c`
- `--use_tb`: Whether to record the data with [tb-paddle](https://github.com/linshuliang/tb-paddle), so as to display in Tensorboard, default is `False`
- `--tb_log_dir`: tb-paddle logging directory for scalar, default is `tb_log_dir/scalar`
- `--fp16`: Whether to enable mixed precision training (requires GPU), default is `False`
- `--loss_scale`: Loss scaling factor for mixed precision training, default is `8.0`
## Examples
##### Examples
### Training
- Perform evaluation in training
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
```
Alternating between training epoch and evaluation run is possible, simply pass
in `--eval` to do so and evaluate at each snapshot_iter. It can be modified at `snapshot_iter` of the configuration file. If evaluation dataset is large and
causes time-consuming in training, we suggest decreasing evaluation times or evaluating after training. When perform evaluation in training,
the best model with highest MAP is saved at each `snapshot_iter`. `best_model` has the same path as `model_final`.
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
```
Perform training and evalution alternatively and evaluate at each snapshot_iter. Meanwhile, the best model with highest MAP is saved at each `snapshot_iter` which has the same path as `model_final`.
- Configure dataset path
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-d dataset/coco
```
If evaluation dataset is large, we suggest decreasing evaluation times or evaluating after training.
- Fine-tune other task
When using pre-trained model to fine-tune other task, two methods can be used:
When using pre-trained model to fine-tune other task, two methods can be used:
1. The excluded pre-trained parameters can be set by `finetune_exclude_pretrained_params` in YAML config
2. Set -o finetune_exclude_pretrained_params in the arguments.
1. The excluded pre-trained parameters can be set by `finetune_exclude_pretrained_params` in YAML config
2. Set -o finetune\_exclude\_pretrained_params in the arguments.
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o pretrain_weights=output/faster_rcnn_r50_1x/model_final/ \
finetune_exclude_pretrained_params = ['cls_score','bbox_pred']
```
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o pretrain_weights=output/faster_rcnn_r50_1x/model_final/ \
finetune_exclude_pretrained_params = ['cls_score','bbox_pred']
```
##### NOTES
- `CUDA_VISIBLE_DEVICES` can specify different gpu numbers. Such as: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU calculation rules can refer [FAQ](#faq)
- Dataset will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally.
- Pretrained model is downloaded automatically and cached in `~/.cache/paddle/weights`.
- Checkpoints are saved in `output` by default, and can be revised from save_dir in configure files.
- RCNN models training on CPU is not supported on PaddlePaddle<=1.5.1 and will be fixed on later version.
- Mixed Precision Training
### Mixed Precision Training
Mixed precision training can be enabled with `--fp16` flag. Currently Faster-FPN, Mask-FPN and Yolov3 have been verified to be working with little to no loss of precision (less than 0.2 mAP)
To speed up mixed precision training, it is recommended to train in multi-process mode, for example
```bash
export PYTHONPATH=$PYTHONPATH:.
python -m paddle.distributed.launch --selected_gpus 0,1,2,3,4,5,6,7 tools/train.py --fp16 -c configs/faster_rcnn_r50_fpn_1x.yml
```
......@@ -99,130 +98,65 @@ If loss becomes `NaN` during training, try tweak the `--loss_scale` value. Pleas
Also, please note mixed precision training currently requires changing `norm_type` from `affine_channel` to `bn`.
##### NOTES
- `CUDA_VISIBLE_DEVICES` can specify different gpu numbers. Such as: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU calculation rules can refer [FAQ](#faq)
- Dataset is stored in `dataset/coco` by default (configurable).
- Dataset will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally.
- Pretrained model is downloaded automatically and cached in `~/.cache/paddle/weights`.
- Model checkpoints are saved in `output` by default (configurable).
- When finetuning, users could set `pretrain_weights` to the models published by PaddlePaddle. Parameters matched by fields in finetune_exclude_pretrained_params will be ignored in loading and fields can be wildcard matching. For detailed information, please refer to [Transfer Learning](TRANSFER_LEARNING.md).
- To check out hyper parameters used, please refer to the [configs](../configs).
- RCNN models training on CPU is not supported on PaddlePaddle<=1.5.1 and will be fixed on later version.
### Evaluation
## Evaluation
```bash
# run on GPU with:
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
```
#### Optional arguments
- `-d` or `--dataset_dir`: Dataset path, same as dataset_dir of configs. Such as: `-d dataset/coco`
- `--output_eval`: Evaluation directory, default is current directory.
- `-o`: Set configuration options in config file. Such as: `-o weights=output/faster_rcnn_r50_1x/model_final`
- `--json_eval`: Whether to eval with already existed bbox.json or mask.json. Default is `False`. Json file directory is assigned by `-f` argument.
- Evaluate by specified weights path and dataset path
#### Examples
```bash
export CUDA_VISIBLE_DEVICES=0
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \
-d dataset/coco
```
- Evaluate by specified weights path and dataset path
```bash
# run on GPU with:
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=output/faster_rcnn_r50_1x/model_final \
-d dataset/coco
```
The path of model to be evaluted can be both local path and link in [MODEL_ZOO](MODEL_ZOO_cn.md).
- Evaluate with json
```bash
# run on GPU with:
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
```bash
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
--json_eval \
-f evaluation/
```
```
The json file must be named bbox.json or mask.json, placed in the `evaluation/` directory. Or without the `-f` parameter, default is the current directory.
The json file must be named bbox.json or mask.json, placed in the `evaluation/` directory.
#### NOTES
- Checkpoint is loaded from `output` by default (configurable)
- Multi-GPU evaluation for R-CNN and SSD models is not supported at the
moment, but it is a planned feature
## Inference
- Run inference on a single image:
```bash
# run on GPU with:
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
```
- Multi-image inference:
```bash
# run on GPU with:
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_dir=demo
```
#### Optional arguments
- `--output_dir`: Directory for storing the output visualization files.
- `--draw_threshold`: Threshold to reserve the result for visualization. Default is 0.5.
- `--save_inference_model`: Save inference model in output_dir if True.
- `--use_tb`: Whether to record the data with [tb-paddle](https://github.com/linshuliang/tb-paddle), so as to display in Tensorboard, default is `False`
- `--tb_log_dir`: tb-paddle logging directory for image, default is `tb_log_dir/image`
#### Examples
### Inference
- Output specified directory && Set up threshold
```bash
# run on GPU with:
export PYTHONPATH=$PYTHONPATH:.
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
```bash
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--output_dir=infer_output/ \
--draw_threshold=0.5 \
-o weights=output/faster_rcnn_r50_1x/model_final \
--use_tb=Ture
```
```
`--draw_threshold` is an optional argument. Default is 0.5.
Different thresholds will produce different results depending on the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659).
The visualization files are saved in `output` by default, to specify a different path, simply add a `--output_dir=` flag.
`--draw_threshold` is an optional argument. Default is 0.5.
Different thresholds will produce different results depending on the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659).
If users want to infer according to customized model path, `-o weights` can be set for specified path.
`--use_tb` is an optional argument, if `--use_tb` is `True`, the tb-paddle will record data in directory,
so users can see the results in Tensorboard.
- Save inference model
```bash
# run on GPU with:
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
```bash
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--save_inference_model
```
```
Save inference model by set `--save_inference_model`, which can be loaded by PaddlePaddle predict library.
Save inference model by set `--save_inference_model`, which can be loaded by PaddlePaddle predict library.
## FAQ
......
......@@ -3,95 +3,94 @@
关于配置运行环境,请参考[安装指南](INSTALL_cn.md)
## 训练
#### 单GPU训练
## 训练/评估/推断
PaddleDetection提供了训练/训练/评估三个功能的使用脚本,支持通过不同可选参数实现特定功能
```bash
export CUDA_VISIBLE_DEVICES=0
# 设置PYTHONPATH路径
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
#### 多GPU训练
```bash
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
# GPU评估
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
# 推断
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
```
#### CPU训练
### 可选参数列表
```bash
export CPU_NUM=8
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml -o use_gpu=false
```
以下列表可以通过`--help`查看
| FLAG | 支持脚本 | 用途 | 默认值 | 备注 |
| :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: |
| -c | ALL | 指定配置文件 | None | **完整配置说明请参考[配置案例](config_example)** |
| -o | ALL | 设置配置文件里的参数内容 | None | 使用-o配置相较于-c选择的配置文件具有更高的优先级。例如:`-o use_gpu=False max_iter=10000` |
| -r/--resume_checkpoint | train | 从某一检查点恢复训练 | None | `-r output/faster_rcnn_r50_1x/10000` |
| --eval | train | 是否边训练边测试 | False | |
| --output_eval | train/eval | 编辑评测保存json路径 | 当前路径 | `--output_eval ./json_result` |
| -d/--dataset_dir | train/eval | 数据集路径, 同配置文件里的dataset_dir | None | `-d dataset/coco` |
| --fp16 | train | 是否使用混合精度训练模式 | False | 需使用GPU训练 |
| --loss_scale | train | 设置混合精度训练模式中损失值的缩放比例 | 8.0 | 需先开启`--fp16`后使用 |
| --json_eval | eval | 是否通过已存在的bbox.json或者mask.json进行评估 | False | json文件路径在`--output_eval`中设置 |
| --output_dir | infer | 输出推断后可视化文件 | `./output` | `--output_dir output` |
| --draw_threshold | infer | 可视化时分数阈值 | 0.5 | `--draw_threshold 0.7` |
| --save\_inference_model | infer | 是否保存预测模型 | False | 预测模型保存路径为`--output_dir`设置的路径 |
| --infer_dir | infer | 用于推断的图片文件夹路径 | None | |
| --infer_img | infer | 用于推断的图片路径 | None | 相较于`--infer_dir`具有更高优先级 |
| --use_tb | train/infer | 是否使用[tb-paddle](https://github.com/linshuliang/tb-paddle)记录数据,进而在TensorBoard中显示 | False | |
| --tb\_log_dir | train/infer | 指定 tb-paddle 记录数据的存储路径 | train:`tb_log_dir/scalar` infer: `tb_log_dir/image` | |
##### 可选参数
- `-r` or `--resume_checkpoint`: 从某一检查点恢复训练,例如: `-r output/faster_rcnn_r50_1x/10000`
- `--eval`: 是否边训练边测试,默认是 `False`
- `--output_eval`: 如果边训练边测试, 这个参数可以编辑评测保存json路径, 默认是当前目录。
- `-d` or `--dataset_dir`: 数据集路径, 同配置文件里的`dataset_dir`. 例如: `-d dataset/coco`
- `-c`: 选择配置文件,所有配置文件在`configs/`
- `-o`: 设置配置文件里的参数内容。例如: `-o max_iters=180000`。使用`-o`配置相较于`-c`选择的配置文件具有更高的优先级。
- `--use_tb`: 是否使用[tb-paddle](https://github.com/linshuliang/tb-paddle)记录数据,进而在TensorBoard中显示,默认是False。
- `--tb_log_dir`: 指定 tb-paddle 记录数据的存储路径,默认是`tb_log_dir/scalar`
- `--fp16`: 是否使用混合精度训练模式(需GPU训练),默认是`False`
- `--loss_scale`: 设置混合精度训练模式中损失值的缩放比例,默认是`8.0`
## 使用示例
##### 例子
### 模型训练
- 边训练边测试
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
```
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval -d dataset/coco
```
可通过设置`--eval`在训练epoch中交替执行评估, 评估在每个snapshot\_iter时开始。可在配置文件的`snapshot_iter`处修改。
如果验证集很大,测试将会比较耗时,影响训练速度,建议减少评估次数,或训练完再进行评估。
当边训练边测试时,在每次snapshot\_iter会评测出最佳mAP模型保存到
`best_model`文件夹下,`best_model`的路径和`model_final`的路径相同。
在训练中交替执行评估, 评估在每个snapshot\_iter时开始。每次评估后还会评出最佳mAP模型保存到`best_model`文件夹下。
- 指定数据集路径
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-d dataset/coco
```
- Fine-tune其他任务
使用预训练模型fine-tune其他任务时,可采用如下两种方式:
使用预训练模型fine-tune其他任务时,可采用如下两种方式:
1. 在YAML配置文件中设置`finetune_exclude_pretrained_params`
2. 在命令行中添加-o finetune_exclude_pretrained_params对预训练模型进行选择性加载。
1. 在YAML配置文件中设置`finetune_exclude_pretrained_params`
2. 在命令行中添加-o finetune\_exclude\_pretrained_params对预训练模型进行选择性加载。
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o pretrain_weights=output/faster_rcnn_r50_1x/model_final/ \
finetune_exclude_pretrained_params = ['cls_score','bbox_pred']
```
finetune_exclude_pretrained_params=['cls_score','bbox_pred']
```
详细说明请参考[Transfer Learning](TRANSFER_LEARNING_cn.md)
#### 提示
- `CUDA_VISIBLE_DEVICES` 参数可以指定不同的GPU。例如: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU计算规则可以参考 [FAQ](#faq)
- 若本地未找到数据集,将自动下载数据集并保存在`~/.cache/paddle/dataset`中。
- 预训练模型自动下载并保存在`〜/.cache/paddle/weights`中。
- 模型checkpoints默认保存在`output`中,可通过修改配置文件中save_dir进行配置。
- RCNN系列模型CPU训练在PaddlePaddle 1.5.1及以下版本暂不支持。
- 混合精度训练
### 混合精度训练
通过设置 `--fp16` 命令行选项可以启用混合精度训练。目前混合精度训练已经在Faster-FPN, Mask-FPN 及 Yolov3 上进行验证,几乎没有精度损失(小于0.2 mAP)。
建议使用多进程方式来进一步加速混合精度训练。示例如下。
```bash
export PYTHONPATH=$PYTHONPATH:.
python -m paddle.distributed.launch --selected_gpus 0,1,2,3,4,5,6,7 tools/train.py --fp16 -c configs/faster_rcnn_r50_fpn_1x.yml
```
......@@ -99,127 +98,63 @@ python -m paddle.distributed.launch --selected_gpus 0,1,2,3,4,5,6,7 tools/train.
另外,请注意将配置文件中的 `norm_type``affine_channel` 改为 `bn`
##### 提示
- `CUDA_VISIBLE_DEVICES` 参数可以指定不同的GPU。例如: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU计算规则可以参考 [FAQ](#faq)
- 数据集默认存储在`dataset/coco`中(可配置)。
- 若本地未找到数据集,将自动下载数据集并保存在`~/.cache/paddle/dataset`中。
- 预训练模型自动下载并保存在`〜/.cache/paddle/weights`中。
- 模型checkpoints默认保存在`output`中(可配置)。
- 进行模型fine-tune时,用户可将`pretrain_weights`配置为PaddlePaddle发布的模型,加载模型时finetune_exclude_pretrained_params中的字段匹配的参数不被加载,可以为通配符匹配方式。详细说明请参考[Transfer Learning](TRANSFER_LEARNING_cn.md)
- 更多参数配置,请参考[配置文件](../configs)
- RCNN系列模型CPU训练在PaddlePaddle 1.5.1及以下版本暂不支持,将在下个版本修复。
## 评估
```bash
# GPU评估
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
```
### 模型评估
#### 可选参数
- 指定权重和数据集路径
- `-d` or `--dataset_dir`: 数据集路径, 同配置文件里的`dataset_dir`。例如: `-d dataset/coco`
- `--output_eval`: 这个参数可以编辑评测保存json路径, 默认是当前目录。
- `-o`: 设置配置文件里的参数内容。 例如: `-o weights=output/faster_rcnn_r50_1x/model_final`
- `--json_eval`: 是否通过已存在的bbox.json或者mask.json进行评估。默认是`False`。json文件路径通过`-f`指令来设置。
#### 例子
- 指定数据集路径
```bash
# GPU评估
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=output/faster_rcnn_r50_1x/model_final \
```bash
export CUDA_VISIBLE_DEVICES=0
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \
-d dataset/coco
```
```
评估模型可以为本地路径,例如`output/faster_rcnn_r50_1x/model_final/`, 也可以为[MODEL_ZOO](MODEL_ZOO_cn.md)中给出的模型链接。
- 通过json文件评估
```bash
# GPU评估
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
```bash
export CUDA_VISIBLE_DEVICES=0
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
--json_eval \
-f evaluation/
```
--output_eval evaluation/
```
json文件必须命名为bbox.json或者mask.json,放在`evaluation/`目录下,或者不加`-f`参数,默认为当前目录
json文件必须命名为bbox.json或者mask.json,放在`evaluation/`目录下
#### 提示
- 默认从`output`加载checkpoint(可配置)
- R-CNN和SSD模型目前暂不支持多GPU评估,将在后续版本支持
## 推断
- 单图片推断
```bash
# GPU推断
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
```
- 多图片推断
```bash
# GPU推断
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_dir=demo
```
#### 可选参数
- `--output_dir`: 输出推断后可视化文件。
- `--draw_threshold`: 设置推断的阈值。默认是0.5.
- `--save_inference_model`: 设为`True`时,将预测模型保存到output\_dir中.
- `--use_tb`: 是否使用[tb-paddle](https://github.com/linshuliang/tb-paddle)记录数据,进而在TensorBoard中显示,默认是False。
- `--tb_log_dir`: 指定 tb-paddle 记录数据的存储路径,默认是`tb_log_dir/image`
#### 例子
### 模型推断
- 设置输出路径 && 设置推断阈值
```bash
# GPU推断
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
```bash
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--output_dir=infer_output/ \
--draw_threshold=0.5 \
-o weights=output/faster_rcnn_r50_1x/model_final \
--use_tb=True
```
```
可视化文件默认保存在`output`中,可通过`--output_dir=`指定不同的输出路径。
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,
不同阈值会产生不同的结果。如果用户需要对自定义路径的模型进行推断,可以设置`-o weights`指定模型路径。
`--use_tb`是个可选参数,当为`True`时,可使用 TensorBoard 来可视化参数的变化趋势和图片。
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,
不同阈值会产生不同的结果。如果用户需要对自定义路径的模型进行推断,可以设置`-o weights`指定模型路径。
- 保存推断模型
```bash
# GPU推断
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg \
```bash
# GPU推断
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg \
--save_inference_model
```
```
通过设置`--save_inference_model`保存可供PaddlePaddle预测库加载的推断模型。
通过设置`--save_inference_model`保存可供PaddlePaddle预测库加载的推断模型。
## FAQ
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册