提交 8ee23da8 编写于 作者: H Helin Wang

Fluid new API: dist train without modifying code

Works with 1 trainer 1 pserver. 2 trainer 1 pserver will stuck at the
end of first step, still investigating.

The user only need to set envrionment variables to enable distributed
training.

run pserver:

PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 python no_test_word2vec_new_api.py

run trainer:

PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_TRAINER_ID=0 python no_test_word2vec_new_api.py
上级 f428e82d
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import core import core
import framework import framework
import executor import executor
...@@ -20,6 +21,7 @@ import contextlib ...@@ -20,6 +21,7 @@ import contextlib
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module # optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module import optimizer as opt_module
import distribute_transpiler
__all__ = [ __all__ = [
'Trainer', 'Trainer',
...@@ -76,22 +78,61 @@ class Trainer(object): ...@@ -76,22 +78,61 @@ class Trainer(object):
raise TypeError( raise TypeError(
"The optimizer should be an instance of Optimizer") "The optimizer should be an instance of Optimizer")
optimizer.minimize(loss) optimize_ops, params_grads = optimizer.minimize(loss)
self.place = Trainer._check_and_get_place(place) self.place = Trainer._check_and_get_place(place)
self.dist_transpile_if_necessary(optimize_ops, params_grads)
# 2. move the default_main_program to self.program and run the # 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope() # default_startup program on an empty core.Scope()
# Run startup program # Run startup program
exe = executor.Executor(place) with self._prog_and_scope_guard():
exe.run(self.startup_program, scope=self.scope) exe = executor.Executor(place)
exe.run(self.startup_program)
if param_path: if param_path:
# load params from param_path into scope # load params from param_path into scope
# TODO(yuyang): This depends on parameters implementation. # TODO(yuyang): This depends on parameters implementation.
pass pass
# TODO(helin): support distributed training def dist_transpile_if_necessary(self, optimize_ops, params_grads):
if "PADDLE_TRAINING_ROLE" not in os.environ:
return
# the port of all pservers, needed by both trainer and pserver
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
# comma separated ips of all pservers, needed by trainer and
# pserver
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
# total number of workers/trainers in the job, needed by
# trainer and pserver
trainers = int(os.getenv("PADDLE_TRAINERS"))
# the IP of the local machine, needed by pserver only
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
# the unique trainer id, starting from 0, needed by trainer
# only
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
# the role, should be either PSERVER or TRAINER
training_role = os.getenv("PADDLE_TRAINING_ROLE")
with self._prog_and_scope_guard():
t = distribute_transpiler.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
if training_role == "PSERVER":
self.train_program = t.get_pserver_program(current_endpoint)
self.startup_program = t.get_startup_program(current_endpoint,
self.train_program)
elif training_role == "TRAINER":
self.train_program = t.get_trainer_program()
else:
raise ValueError(
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
def train(self, def train(self,
num_epochs, num_epochs,
...@@ -117,6 +158,13 @@ class Trainer(object): ...@@ -117,6 +158,13 @@ class Trainer(object):
raise NotImplementedError( raise NotImplementedError(
"Parallel Executor version of trainer is not implemented") "Parallel Executor version of trainer is not implemented")
training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
if training_role == "PSERVER":
with self._prog_and_scope_guard():
exe = executor.Executor(self.place)
exe.run()
return
self._train_by_executor(num_epochs, event_handler, reader, feed_order) self._train_by_executor(num_epochs, event_handler, reader, feed_order)
def test(self, reader): def test(self, reader):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册