Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
89d6d69c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89d6d69c
编写于
8月 29, 2018
作者:
T
tensor-tang
提交者:
GitHub
8月 29, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12781 from tensor-tang/feature/op/fusion_gru
add fusion gru
上级
d941192e
d9bf73f3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
610 addition
and
103 deletion
+610
-103
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+332
-0
paddle/fluid/operators/fusion_gru_op.h
paddle/fluid/operators/fusion_gru_op.h
+41
-0
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
+133
-0
python/paddle/fluid/tests/unittests/test_gru_op.py
python/paddle/fluid/tests/unittests/test_gru_op.py
+104
-103
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
0 → 100644
浏览文件 @
89d6d69c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fusion_gru_op.h"
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
namespace
paddle
{
namespace
operators
{
void
FusionGRUOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightX"
),
"Input(WeightX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightH"
),
"Input(WeightH) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedGate"
),
"Output(BatchedGate) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchResetHiddenPrev"
),
"Output(BatchResetHiddenPrev) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedHidden"
),
"Output(BatchedHidden) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of GRU should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
wx_dims
=
ctx
->
GetInputDim
(
"WeightX"
);
PADDLE_ENFORCE_EQ
(
wx_dims
.
size
(),
2
,
"The rank of Input(WeightX) should be 2."
);
PADDLE_ENFORCE_EQ
(
wx_dims
[
0
],
x_dims
[
1
],
"The first dimension of Input(WeightX) "
"should be %d."
,
x_dims
[
1
]);
int
frame_size
=
wx_dims
[
1
]
/
3
;
auto
wh_dims
=
ctx
->
GetInputDim
(
"WeightH"
);
PADDLE_ENFORCE_EQ
(
wh_dims
.
size
(),
2
,
"The rank of Input(WeightH) should be 2."
);
PADDLE_ENFORCE_EQ
(
wh_dims
[
0
],
frame_size
,
"The first dimension of Input(WeightH) "
"should be %d."
,
frame_size
);
PADDLE_ENFORCE_EQ
(
wh_dims
[
1
],
3
*
frame_size
,
"The second dimension of Input(WeightH) "
"should be 3 * %d."
,
frame_size
);
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h0_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE_EQ
(
h0_dims
[
1
],
frame_size
,
"The width of H0 must be equal to frame_size."
);
}
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"The first dimension of Input(Bias) should be 1."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedGate"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedHidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchResetHiddenPrev"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
int
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
ShareLoD
(
"X"
,
"XX"
);
}
framework
::
OpKernelType
FusionGRUOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
void
FusionGRUOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"H0"
,
"(Tensor, optional) The initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size."
)
.
AsDispensable
();
AddInput
(
"WeightX"
,
"(Tensor) The FC weight with shape (M x 3D),"
"where M is the dim size of x, D is the hidden size. "
);
AddInput
(
"WeightH"
,
"(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
);
AddInput
(
"Bias"
,
"(Tensor, optional) (1 x 3D)."
"Almost same as GRUOp."
"Note: if have FC bias it should be added on this bias."
)
.
AsDispensable
();
AddOutput
(
"XX"
,
"(LoDTensor) the result after X * WeightX (size is T x 4D)"
" or batched_X (size is T x M), this will be automatically chosen,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size, M is the dim size of x input."
)
.
AsIntermediate
();
AddOutput
(
"BatchedGate"
,
"(LoDTensor) Same as GRUOp"
).
AsIntermediate
();
AddOutput
(
"BatchResetHiddenPrev"
,
"(LoDTensor) (T x 3D) Same as GRUOp."
)
.
AsIntermediate
();
AddOutput
(
"BatchedHidden"
,
"(LoDTensor) (T X D) Same as GRUOp."
)
.
AsIntermediate
();
AddOutput
(
"Hidden"
,
"(LoDTensor) (T x D) Same as GRUOp"
);
AddAttr
<
std
::
string
>
(
"activation"
,
"(string, default tanh) "
"The activation type used for output candidate {h}_t."
)
.
SetDefault
(
"tanh"
);
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default sigmoid) "
"The activation type used in update gate and reset gate."
)
.
SetDefault
(
"sigmoid"
);
AddAttr
<
bool
>
(
"is_reverse"
,
"(bool, defalut: False) "
"whether to compute reversed GRU."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU,
more details can refer to GRU op.
)DOC"
);
}
template
<
typename
DeviceContext
,
typename
T
>
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
framework
::
Vector
<
size_t
>
index_lod
,
framework
::
Tensor
*
dst
,
bool
indexed_src
)
{
math
::
CopyMatrixRowsFunctor
<
DeviceContext
,
T
>
row_shuffle
;
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
ctx
.
GetPlace
());
row_shuffle
(
ctx
,
src
,
index_lod
,
dst
,
indexed_src
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
FusionGRUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
batched_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedGate"
);
auto
*
batch_reset_hidden_prev
=
ctx
.
Output
<
LoDTensor
>
(
"BatchResetHiddenPrev"
);
auto
*
batch_hidden
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_gate_data
=
batched_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
batch_reset_hidden_prev
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
batch_hidden
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
auto
x_dims
=
x
->
dims
();
auto
wx_dims
=
wx
->
dims
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
if
(
x_dims
[
1
]
>
wx_dims
[
1
])
{
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
x_data
,
wx_data
,
xx_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
to_batch
(
dev_ctx
,
*
xx
,
batched_gate
,
true
,
is_reverse
);
}
else
{
to_batch
(
dev_ctx
,
*
x
,
xx
,
true
,
is_reverse
);
batched_gate
->
set_lod
(
xx
->
lod
());
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
xx_data
,
wx_data
,
batched_gate_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
}
int
frame_size
=
static_cast
<
int
>
(
wx_dims
[
1
]
/
3
);
math
::
GRUMetaValue
<
T
>
gru_value
;
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
wh_data
);
gru_value
.
state_weight
=
const_cast
<
T
*>
(
wh_data
+
2
*
frame_size
*
frame_size
);
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batched_gate
->
lod
()[
2
]);
if
(
h0
)
{
ReorderInitState
<
DeviceContext
,
T
>
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
h0
,
order
,
&
ordered_h0
,
true
);
gru_value
.
prev_out_value
=
ordered_h0
.
data
<
T
>
();
}
else
{
gru_value
.
prev_out_value
=
nullptr
;
}
auto
batch_starts
=
batched_gate
->
lod
()[
0
];
size_t
seq_len
=
batch_starts
.
size
()
-
1
;
auto
active_node
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"activation"
));
auto
active_gate
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
#ifdef PADDLE_WITH_MKLML
// use MKL packed to speedup GEMM
if
(
FLAGS_paddle_num_threads
>=
4
)
{
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
T
*
packed_gate
=
blas
.
GEMM_ALLOC
(
CblasBMatrix
,
1
/*height of C*/
,
frame_size
*
2
/*width of weight*/
,
frame_size
/*height of height*/
);
PADDLE_ENFORCE
(
packed_gate
);
blas
.
GEMM_PACK
(
CblasBMatrix
,
CblasNoTrans
,
1
/*cur bs?*/
,
frame_size
*
2
,
frame_size
,
T
(
1.0
),
gru_value
.
gate_weight
,
frame_size
*
2
,
packed_gate
);
T
*
packed_state
=
blas
.
GEMM_ALLOC
(
CblasBMatrix
,
1
/*height of C*/
,
frame_size
/*width of weight*/
,
frame_size
/*height of height*/
);
PADDLE_ENFORCE
(
packed_state
);
blas
.
GEMM_PACK
(
CblasBMatrix
,
CblasNoTrans
,
1
/*cur bs?*/
,
frame_size
,
frame_size
,
T
(
1.0
),
gru_value
.
state_weight
,
frame_size
,
packed_state
);
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batched_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
if
(
gru_value
.
prev_out_value
)
{
blas
.
GEMM_COMPUTE
(
CblasNoTrans
,
CblasPacked
,
cur_batch_size
,
frame_size
*
2
,
frame_size
,
gru_value
.
prev_out_value
,
frame_size
,
packed_gate
,
frame_size
*
2
,
T
(
1
),
gru_value
.
gate_value
,
frame_size
*
3
);
}
math
::
detail
::
forward_reset_output
(
math
::
detail
::
forward
::
gru_resetOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_gate
);
if
(
gru_value
.
prev_out_value
)
{
blas
.
GEMM_COMPUTE
(
CblasNoTrans
,
CblasPacked
,
cur_batch_size
,
frame_size
,
frame_size
,
gru_value
.
reset_output_value
,
frame_size
,
packed_state
,
frame_size
,
T
(
1
),
gru_value
.
gate_value
+
frame_size
*
2
,
frame_size
*
3
);
}
math
::
detail
::
forward_final_output
(
math
::
detail
::
forward
::
gru_finalOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_node
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
blas
.
GEMM_FREE
(
packed_gate
);
blas
.
GEMM_FREE
(
packed_state
);
}
else
{
#endif
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batched_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
#ifdef PADDLE_WITH_MKLML
}
#endif
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch_hidden
->
set_lod
(
batched_gate
->
lod
());
to_seq
(
dev_ctx
,
*
batch_hidden
,
hidden_out
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fusion_gru
,
ops
::
FusionGRUOp
,
ops
::
FusionGRUOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
fusion_gru
,
ops
::
FusionGRUKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
FusionGRUKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/fusion_gru_op.h
0 → 100644
浏览文件 @
89d6d69c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
FusionGRUOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
FusionGRUOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
0 → 100644
浏览文件 @
89d6d69c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
from
op_test
import
OpTest
from
test_gru_op
import
gru
from
test_fusion_lstm_op
import
fc
,
ACTIVATION
def
fusion_gru
(
x
,
# T x M
lod
,
# 1 x N
h0
,
# N x D
wx
,
# M x 3D
wh
,
# D x 3D
bias
,
# 1 x 3D
is_reverse
,
act_state
,
act_gate
):
return
gru
(
fc
(
x
,
wx
,
bias
),
lod
,
h0
,
wh
,
np
.
zeros
(
(
1
,
wh
.
shape
[
1
]),
dtype
=
'float64'
),
is_reverse
,
act_state
,
act_gate
)
class
TestFusionGRUOp
(
OpTest
):
def
set_confs
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"fusion_gru"
self
.
lod
=
[[
2
,
4
,
3
]]
self
.
M
=
3
self
.
D
=
5
self
.
is_reverse
=
False
self
.
with_h0
=
True
self
.
with_bias
=
True
self
.
act_state
=
'tanh'
self
.
act_gate
=
'sigmoid'
self
.
set_confs
()
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
x
=
np
.
random
.
rand
(
T
,
self
.
M
).
astype
(
'float64'
)
wx
=
np
.
random
.
rand
(
self
.
M
,
3
*
self
.
D
).
astype
(
'float64'
)
wh
=
np
.
random
.
rand
(
self
.
D
,
3
*
self
.
D
).
astype
(
'float64'
)
bias
=
np
.
random
.
rand
(
1
,
3
*
self
.
D
).
astype
(
'float64'
)
if
self
.
with_bias
else
np
.
zeros
(
(
1
,
3
*
self
.
D
),
dtype
=
'float64'
)
h0
=
np
.
random
.
rand
(
N
,
self
.
D
).
astype
(
'float64'
)
if
self
.
with_h0
else
np
.
zeros
(
(
N
,
self
.
D
),
dtype
=
'float64'
)
_
,
_
,
_
,
hidden
=
fusion_gru
(
x
,
self
.
lod
,
h0
,
wx
,
wh
,
bias
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_state
],
ACTIVATION
[
self
.
act_gate
])
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'WeightX'
:
wx
,
'WeightH'
:
wh
}
if
self
.
with_bias
:
self
.
inputs
[
'Bias'
]
=
bias
if
self
.
with_h0
:
self
.
inputs
[
'H0'
]
=
h0
self
.
outputs
=
{
'Hidden'
:
(
hidden
,
self
.
lod
)}
self
.
attrs
=
{
'activation'
:
self
.
act_state
,
'gate_activation'
:
self
.
act_gate
,
'is_reverse'
:
self
.
is_reverse
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
class
TestFusionGRUOpNoInitial
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
with_h0
=
False
class
TestFusionGRUOpNoBias
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
with_bias
=
False
class
TestFusionGRUOpReverse
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
is_reverse
=
True
class
TestFusionGRUOpMD1
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
M
=
36
self
.
D
=
8
class
TestFusionGRUOpMD2
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
M
=
8
self
.
D
=
8
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
lod
=
[[
3
]]
self
.
D
=
16
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_gru_op.py
浏览文件 @
89d6d69c
...
...
@@ -19,22 +19,19 @@ import numpy as np
import
math
import
functools
from
op_test
import
OpTest
from
test_lstm_op
import
identity
,
sigmoid
,
tanh
,
relu
class
TestGRUOp
(
OpTest
):
lod
=
[[
2
,
4
,
3
]]
batch_size
=
sum
(
lod
[
0
])
frame_size
=
5
activate
=
{
'identity'
:
identity
,
'sigmoid'
:
sigmoid
,
'tanh'
:
tanh
,
'relu'
:
relu
}
@
staticmethod
def
seq_to_batch
(
lod
,
is_reverse
):
from
test_lstm_op
import
ACTIVATION
def
gru
(
input
,
# T x 3D
lod
,
# 1 x N
h0
,
# N x D
weight
,
# D x 3D
bias
,
# 1 x 3D
is_reverse
,
act_state
,
act_gate
):
def
_seq_to_batch
(
lod
,
is_reverse
):
idx_in_seq_list
=
[]
seq_lens
=
lod
[
0
]
seq_starts
=
[
0
]
...
...
@@ -56,121 +53,125 @@ class TestGRUOp(OpTest):
idx_in_seq_list
.
append
(
idx_in_seq
)
return
idx_in_seq_list
,
sorted_seqs
def
gru_step
(
self
,
x
,
h_p
,
w
,
b
):
batch_size
=
x
.
shape
[
0
]
frame_size
=
w
.
shape
[
0
]
g
=
x
+
np
.
tile
(
b
,
(
batch_size
,
1
))
w_u_r
=
w
.
flatten
()[:
frame_size
*
frame_size
*
2
].
reshape
(
(
frame_size
,
frame_size
*
2
))
u_r
=
self
.
activate
[
self
.
attrs
[
'gate_activation'
]](
np
.
dot
(
h_p
,
w_u_r
)
+
g
[:,
:
frame_size
*
2
])
u
=
u_r
[:,
:
frame_size
]
r
=
u_r
[:,
frame_size
:
frame_size
*
2
]
def
_step
(
x
,
h_p
,
w
,
b
,
act_state
,
act_gate
):
T
=
x
.
shape
[
0
]
D
=
w
.
shape
[
0
]
g
=
x
+
np
.
tile
(
b
,
(
T
,
1
))
w_u_r
=
w
.
flatten
()[:
D
*
D
*
2
].
reshape
((
D
,
D
*
2
))
u_r
=
act_gate
(
np
.
dot
(
h_p
,
w_u_r
)
+
g
[:,
:
D
*
2
])
u
=
u_r
[:,
:
D
]
r
=
u_r
[:,
D
:
D
*
2
]
r_h_p
=
r
*
h_p
w_c
=
w
.
flatten
()[
frame_size
*
frame_size
*
2
:].
reshape
(
(
frame_size
,
frame_size
))
c
=
self
.
activate
[
self
.
attrs
[
'activation'
]](
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
frame_size
*
2
:])
w_c
=
w
.
flatten
()[
D
*
D
*
2
:].
reshape
((
D
,
D
))
c
=
act_state
(
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
D
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
c
+
(
1
-
u
)
*
h_p
return
g
,
r_h_p
,
h
def
gru
(
self
):
input
,
lod
=
self
.
inputs
[
'Input'
]
w
=
self
.
inputs
[
'Weight'
]
b
=
self
.
inputs
[
'Bias'
]
if
'Bias'
in
self
.
inputs
else
np
.
zeros
(
(
1
,
self
.
frame_size
*
3
))
batch_gate
=
self
.
outputs
[
'BatchGate'
]
batch_reset_hidden_prev
=
self
.
outputs
[
'BatchResetHiddenPrev'
]
batch_hidden
=
self
.
outputs
[
'BatchHidden'
]
hidden
=
self
.
outputs
[
'Hidden'
]
idx_in_seq_list
=
self
.
idx_in_seq_list
h_p
=
self
.
inputs
[
'H0'
][
self
.
sorted_seqs
]
if
'H0'
in
self
.
inputs
else
np
.
zeros
(
(
len
(
idx_in_seq_list
[
0
]),
self
.
frame_size
))
num_batch
=
len
(
idx_in_seq_list
)
end_idx
=
0
for
batch_idx
in
range
(
num_batch
):
x
=
input
[
idx_in_seq_list
[
batch_idx
]]
g
,
r_h_p
,
h
=
self
.
gru_step
(
x
,
h_p
,
w
,
b
)
if
batch_idx
<
(
num_batch
-
1
):
h_p
=
h
[:
len
(
idx_in_seq_list
[
batch_idx
+
1
])]
start_idx
=
end_idx
end_idx
=
start_idx
+
len
(
idx_in_seq_list
[
batch_idx
])
batch_gate
[
start_idx
:
end_idx
]
=
g
batch_reset_hidden_prev
[
start_idx
:
end_idx
]
=
r_h_p
batch_hidden
[
start_idx
:
end_idx
]
=
h
hidden
[
idx_in_seq_list
[
batch_idx
]]
=
h
return
batch_gate
,
batch_reset_hidden_prev
,
hidden
def
set_data
(
self
):
lod
=
self
.
lod
self
.
idx_in_seq_list
,
self
.
sorted_seqs
=
self
.
seq_to_batch
(
lod
,
self
.
is_reverse
)
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
input
=
np
.
random
.
rand
(
batch_size
,
frame_size
*
3
).
astype
(
'float64'
)
h0
=
np
.
random
.
rand
(
len
(
self
.
idx_in_seq_list
[
0
]),
frame_size
).
astype
(
'float64'
)
weight
=
np
.
random
.
rand
(
frame_size
,
frame_size
*
3
).
astype
(
'float64'
)
bias
=
np
.
random
.
rand
(
1
,
frame_size
*
3
).
astype
(
'float64'
)
self
.
inputs
=
{
'Input'
:
(
input
,
lod
),
'H0'
:
h0
,
'Weight'
:
weight
,
'Bias'
:
bias
}
T
=
sum
(
lod
[
0
])
N
=
len
(
lod
[
0
])
D
=
weight
.
shape
[
0
]
batch_gate
=
np
.
zeros
((
T
,
3
*
D
),
dtype
=
'float64'
)
batch_reset_hidden_prev
=
np
.
zeros
((
T
,
D
),
dtype
=
'float64'
)
batch_hidden
=
np
.
zeros
((
T
,
D
),
dtype
=
'float64'
)
hidden
=
np
.
zeros
((
T
,
D
),
dtype
=
'float64'
)
idx_in_seq_list
,
sorted_seqs
=
_seq_to_batch
(
lod
,
is_reverse
)
h_p
=
h0
[
sorted_seqs
]
max_seq_len
=
len
(
idx_in_seq_list
)
assert
len
(
idx_in_seq_list
[
0
])
==
N
end_idx
=
0
for
batch_idx
in
range
(
max_seq_len
):
x
=
input
[
idx_in_seq_list
[
batch_idx
]]
g
,
r_h_p
,
h
=
_step
(
x
,
h_p
,
weight
,
bias
,
act_state
,
act_gate
)
if
batch_idx
<
(
max_seq_len
-
1
):
h_p
=
h
[:
len
(
idx_in_seq_list
[
batch_idx
+
1
])]
start_idx
=
end_idx
end_idx
=
start_idx
+
len
(
idx_in_seq_list
[
batch_idx
])
batch_gate
[
start_idx
:
end_idx
]
=
g
batch_reset_hidden_prev
[
start_idx
:
end_idx
]
=
r_h_p
batch_hidden
[
start_idx
:
end_idx
]
=
h
hidden
[
idx_in_seq_list
[
batch_idx
]]
=
h
return
batch_gate
,
batch_reset_hidden_prev
,
batch_hidden
,
hidden
self
.
outputs
=
{
'BatchGate'
:
np
.
zeros
(
(
batch_size
,
frame_size
*
3
),
dtype
=
'float64'
),
'BatchResetHiddenPrev'
:
np
.
zeros
(
(
batch_size
,
frame_size
),
dtype
=
'float64'
),
'BatchHidden'
:
np
.
zeros
(
(
batch_size
,
frame_size
),
dtype
=
'float64'
),
'Hidden'
:
np
.
zeros
(
(
batch_size
,
frame_size
),
dtype
=
'float64'
)
}
class
TestGRUOp
(
OpTest
):
def
set_confs
(
self
):
self
.
is_reverse
=
False
self
.
attrs
=
{
'activation'
:
'tanh'
,
'gate_activation'
:
'sigmoid'
,
'is_reverse'
:
self
.
is_reverse
}
pass
def
setUp
(
self
):
self
.
op_type
=
"gru"
self
.
lod
=
[[
2
,
4
,
3
]]
self
.
D
=
5
self
.
is_reverse
=
False
self
.
with_h0
=
True
self
.
with_bias
=
True
self
.
act_state
=
'tanh'
self
.
act_gate
=
'sigmoid'
self
.
set_confs
()
self
.
set_data
()
self
.
gru
()
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
input
=
np
.
random
.
rand
(
T
,
3
*
self
.
D
).
astype
(
'float64'
)
weight
=
np
.
random
.
rand
(
self
.
D
,
3
*
self
.
D
).
astype
(
'float64'
)
bias
=
np
.
random
.
rand
(
1
,
3
*
self
.
D
).
astype
(
'float64'
)
if
self
.
with_bias
else
np
.
zeros
(
(
1
,
3
*
self
.
D
),
dtype
=
'float64'
)
h0
=
np
.
random
.
rand
(
N
,
self
.
D
).
astype
(
'float64'
)
if
self
.
with_h0
else
np
.
zeros
(
(
N
,
self
.
D
),
dtype
=
'float64'
)
batch_gate
,
batch_reset_hidden_prev
,
batch_hidden
,
hidden
=
gru
(
input
,
self
.
lod
,
h0
,
weight
,
bias
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_state
],
ACTIVATION
[
self
.
act_gate
])
self
.
inputs
=
{
'Input'
:
(
input
,
self
.
lod
),
'Weight'
:
weight
}
if
self
.
with_bias
:
self
.
inputs
[
'Bias'
]
=
bias
if
self
.
with_h0
:
self
.
inputs
[
'H0'
]
=
h0
self
.
outputs
=
{
'Hidden'
:
(
hidden
,
self
.
lod
),
'BatchGate'
:
batch_gate
,
'BatchResetHiddenPrev'
:
batch_reset_hidden_prev
,
'BatchHidden'
:
batch_hidden
,
}
self
.
attrs
=
{
'activation'
:
self
.
act_state
,
'gate_activation'
:
self
.
act_gate
,
'is_reverse'
:
self
.
is_reverse
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
atol
=
1e-8
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
class
TestGRUOpNoInitial
(
TestGRUOp
):
def
set_data
(
self
):
super
(
TestGRUOpNoInitial
,
self
).
set_data
()
self
.
inputs
.
pop
(
'H0'
)
def
set_confs
(
self
):
self
.
with_h0
=
False
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
class
TestGRUOpNoBias
(
TestGRUOp
):
def
set_confs
(
self
):
self
.
with_bias
=
False
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
],
[
'Hidden'
])
class
TestGRUOpReverse
(
TestGRUOp
):
def
set_confs
(
self
):
self
.
is_reverse
=
True
self
.
attrs
=
{
'activation'
:
'tanh'
,
'gate_activation'
:
'sigmoid'
,
'is_reverse'
:
self
.
is_reverse
}
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录