提交 88a3d8dd 编写于 作者: Q qingqing01 提交者: GitHub

Merge pull request #13 from reyoung/final_fixes

Update Develop Branch And Fix All unit tests.
......@@ -14,8 +14,8 @@
cmake_minimum_required(VERSION 3.0)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
set(PROJ_ROOT ${CMAKE_CURRENT_SOURCE_DIR})
set(PROJ_BINARY_ROOT ${CMAKE_CURRENT_BINARY_DIR})
set(PADDLE_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR})
set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
include(system)
......@@ -121,8 +121,8 @@ include(version) # set PADDLE_VERSION
include(coveralls) # set code coverage
include_directories("${PROJ_ROOT}")
include_directories("${PROJ_ROOT}/paddle/cuda/include")
include_directories("${PADDLE_SOURCE_DIR}")
include_directories("${PADDLE_SOURCE_DIR}/paddle/cuda/include")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/proto")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/go/pserver/client/c")
include_directories(${Boost_INCLUDE_DIRS})
......@@ -144,7 +144,7 @@ if(WITH_GPU)
endif(WITH_GPU)
if(WITH_MKLDNN)
list(APPEND EXTERNAL_LIBS ${MKLDNN_LIBRARY} ${MKLDNN_IOMP_LIB})
list(APPEND EXTERNAL_LIBS ${MKLDNN_LIB} ${MKLDNN_IOMP_LIB})
endif()
if(USE_NNPACK)
......@@ -164,10 +164,12 @@ if(WITH_GOLANG)
add_subdirectory(go)
endif(WITH_GOLANG)
set(PADDLE_PYTHON_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/python/build")
add_subdirectory(paddle)
if(WITH_PYTHON)
add_subdirectory(python)
endif()
if(WITH_DOC)
add_subdirectory(doc)
endif()
......@@ -64,13 +64,28 @@ RUN pip install --upgrade pip && \
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install pre-commit 'requests==2.9.2' 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install rarfile
pip install opencv-python rarfile 'scipy>=0.19.0' 'nltk>=3.2.2'
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev
RUN pip install certifi urllib3[secure]
# TODO(qijun) The template library Eigen doesn't work well with GCC 5
# coming with the default Docker image, so we switch to use GCC 4.8
# by default. And I will check Eigen library later.
RUN ln -sf gcc-4.8 /usr/bin/gcc && \
ln -sf gcc-ar-4.8 /usr/bin/gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/gcc-ranlib && \
ln -sf gcc-4.8 /usr/bin/x86_64-linux-gnu-gcc && \
ln -sf gcc-ar-4.8 /usr/bin/x86_64-linux-gnu-gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/x86_64-linux-gnu-gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/x86_64-linux-gnu-gcc-ranlib && \
ln -sf g++-4.8 /usr/bin/g++ && \
ln -sf g++-4.8 /usr/bin/x86_64-linux-gnu-g++
# Install woboq_codebrowser to /woboq
RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \
(cd /woboq \
......
......@@ -129,7 +129,7 @@ if(WITH_GOLANG)
add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/glide
COMMAND env GOPATH=${GOPATH} ${GLIDE} install
COMMAND touch ${CMAKE_BINARY_DIR}/glide
DEPENDS ${PROJ_ROOT}/go/glide.lock
DEPENDS ${PADDLE_SOURCE_DIR}/go/glide.lock
WORKING_DIRECTORY "${PADDLE_IN_GOPATH}/go"
)
......
......@@ -52,7 +52,7 @@ macro(add_style_check_target TARGET_NAME)
if(SOURCES_LIST)
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py"
COMMAND "${PYTHON_EXECUTABLE}" "${PADDLE_SOURCE_DIR}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}"
${SOURCES_LIST}
COMMENT "cpplint: Checking source code style"
......
......@@ -9,10 +9,12 @@ function(CheckCompilerCXX11Flag)
if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8)
message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.")
endif()
# TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem.
# Use Debug mode instead for now.
if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9)
set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE)
if(NOT ANDROID)
# TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem.
# Use Debug mode instead for now.
if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9)
set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE)
endif()
endif()
elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
# cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang"
......
......@@ -411,7 +411,7 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python
python2 ${py_test_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
......
......@@ -12,7 +12,7 @@ set(CPACK_PACKAGE_DESCRIPTION "")
set(CPACK_DEBIAN_PACKAGE_DEPENDS "libpython2.7-dev, libstdc++6, python-pip, curl, libgfortran3, python-pip-whl")
set(CPACK_DEBIAN_PACKAGE_SECTION Devel)
set(CPACK_DEBIAN_PACKAGE_VERSION ${PADDLE_VERSION})
set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${PROJ_ROOT}/paddle/scripts/deb/postinst")
set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${PADDLE_SOURCE_DIR}/paddle/scripts/deb/postinst")
#set(CPACK_GENERATOR "DEB")
# Start cpack
include (CMakePackageConfigHelpers)
......
......@@ -141,8 +141,8 @@ endmacro()
function(create_resources res_file output_file)
add_custom_command(
OUTPUT ${output_file}
COMMAND python ARGS ${PROJ_ROOT}/cmake/make_resource.py ${res_file} ${output_file}
DEPENDS ${res_file} ${PROJ_ROOT}/cmake/make_resource.py)
COMMAND python ARGS ${PADDLE_SOURCE_DIR}/cmake/make_resource.py ${res_file} ${output_file}
DEPENDS ${res_file} ${PADDLE_SOURCE_DIR}/cmake/make_resource.py)
endfunction()
......
......@@ -4,7 +4,7 @@ set(tmp_version "HEAD")
while ("${PADDLE_VERSION}" STREQUAL "")
execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
WORKING_DIRECTORY ${PROJ_ROOT}
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
......
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
......@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python'))
sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
......@@ -24,7 +24,7 @@ AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PROJ_ROOT@/doc_theme/templates"]
templates_path = ["@PADDLE_SOURCE_DIR@/doc_theme/templates"]
# -- General configuration ------------------------------------------------
......@@ -120,7 +120,7 @@ html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['@PROJ_ROOT@/doc_theme/static']
html_static_path = ['@PADDLE_SOURCE_DIR@/doc_theme/static']
# Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc'
......
......@@ -13,7 +13,7 @@
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python'))
sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
import shlex
from recommonmark import parser, transform
import paddle
......@@ -25,7 +25,7 @@ AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PROJ_ROOT@/doc_theme/templates"]
templates_path = ["@PADDLE_SOURCE_DIR@/doc_theme/templates"]
# -- General configuration ------------------------------------------------
......@@ -120,7 +120,7 @@ html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['@PROJ_ROOT@/doc_theme/static']
html_static_path = ['@PADDLE_SOURCE_DIR@/doc_theme/static']
# Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc'
......
......@@ -17,12 +17,10 @@ def main():
# network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x,
param_attr=paddle.attr.Param(
name='w', learning_rate=1e-3),
param_attr=paddle.attr.Param(name='w'),
size=1,
act=paddle.activation.Linear(),
bias_attr=paddle.attr.Param(
name='b', learning_rate=1e-3))
bias_attr=paddle.attr.Param(name='b'))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.mse_cost(input=y_predict, label=y)
......
......@@ -19,9 +19,9 @@ add_library(paddle_api STATIC ${API_SOURCES})
add_dependencies(paddle_api paddle_proto paddle_trainer_lib)
INCLUDE(${SWIG_USE_FILE})
INCLUDE_DIRECTORIES(${PROJ_ROOT}/paddle)
INCLUDE_DIRECTORIES(${PADDLE_SOURCE_DIR}/paddle)
FILE(GLOB PY_PADDLE_PYTHON_FILES ${PROJ_ROOT}/paddle/py_paddle/*.py)
FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
......@@ -79,16 +79,16 @@ SWIG_LINK_LIBRARIES(swig_paddle
${START_END}
)
add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PROJ_ROOT}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PROJ_ROOT}/paddle/py_paddle
add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND ${CMAKE_COMMAND} -E touch .timestamp
WORKING_DIRECTORY ${PROJ_ROOT}/paddle
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
DEPENDS _swig_paddle
)
# TODO(yuyang18) : make wheel name calculated by cmake
add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so)
add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so)
if(WITH_TESTING)
IF(NOT PY_PIP_FOUND)
......
......@@ -41,7 +41,7 @@ ParameterUpdater *ParameterUpdater::createNewRemoteUpdater(
config->m->getConfig(), pserverSpec, useEtcd));
return updater;
#else
throw UnsupportError();
throw UnsupportError("not compiled with WITH_GOLANG");
#endif
}
......
......@@ -90,6 +90,18 @@ paddle_error paddle_arguments_set_ids(paddle_arguments args,
return kPD_NO_ERROR;
}
paddle_error paddle_arguments_set_frame_shape(paddle_arguments args,
uint64_t ID,
uint64_t frameHeight,
uint64_t frameWidth) {
if (args == nullptr) return kPD_NULLPTR;
auto a = castArg(args);
if (ID >= a->args.size()) return kPD_OUT_OF_RANGE;
a->args[ID].setFrameHeight(frameHeight);
a->args[ID].setFrameWidth(frameWidth);
return kPD_NO_ERROR;
}
paddle_error paddle_arguments_set_sequence_start_pos(paddle_arguments args,
uint64_t ID,
uint32_t nestedLevel,
......
......@@ -111,6 +111,20 @@ PD_API paddle_error paddle_arguments_set_ids(paddle_arguments args,
uint64_t ID,
paddle_ivector ids);
/**
* @brief paddle_arguments_set_frame_shape Set the fram size of one argument
* in array, which index is `ID`.
* @param [in] args arguments array
* @param [in] ID array index
* @param [in] frameHeight maximum height of input images
* @param [in] frameWidth maximum width of input images
* @return paddle_error
*/
PD_API paddle_error paddle_arguments_set_frame_shape(paddle_arguments args,
uint64_t ID,
uint64_t frameHeight,
uint64_t frameWidth);
/**
* @brief PDArgsSetSequenceStartPos Set sequence start position vector of one
* argument in array, which index is `ID`.
......
......@@ -3,18 +3,21 @@
#include <stdio.h>
#include <stdlib.h>
#define CHECK(stmt) \
do { \
paddle_error __err__ = stmt; \
if (__err__ != kPD_NO_ERROR) { \
fprintf(stderr, "Invoke paddle error %d \n" #stmt, __err__); \
exit(__err__); \
} \
#define CHECK(stmt) \
do { \
paddle_error __err__ = stmt; \
if (__err__ != kPD_NO_ERROR) { \
fprintf(stderr, "Invoke paddle error %d in " #stmt "\n", __err__); \
exit(__err__); \
} \
} while (0)
void* read_config(const char* filename, long* size) {
FILE* file = fopen(filename, "r");
if (file == NULL) return NULL;
if (file == NULL) {
fprintf(stderr, "Open %s error\n", filename);
return NULL;
}
fseek(file, 0L, SEEK_END);
*size = ftell(file);
fseek(file, 0L, SEEK_SET);
......
......@@ -54,6 +54,31 @@ paddle_error paddle_gradient_machine_create_for_inference(
return kPD_NO_ERROR;
}
paddle_error paddle_gradient_machine_create_for_inference_with_parameters(
paddle_gradient_machine* machine, void* mergedModel, uint64_t size) {
if (mergedModel == nullptr) return kPD_NULLPTR;
std::istringstream is(std::string(static_cast<char*>(mergedModel), size));
int64_t modelConfigSize = 0;
is.read((char*)(&modelConfigSize), sizeof(modelConfigSize));
std::string modelConfigProtobuf;
modelConfigProtobuf.resize(modelConfigSize);
is.read(&modelConfigProtobuf[0], modelConfigSize);
paddle::TrainerConfig config;
if (!config.ParseFromString(modelConfigProtobuf) || !config.IsInitialized()) {
return kPD_PROTOBUF_ERROR;
}
auto ptr = new paddle::capi::CGradientMachine();
ptr->machine.reset(paddle::GradientMachine::create(
config.model_config(), CREATE_MODE_TESTING, {paddle::PARAMETER_VALUE}));
std::vector<paddle::ParameterPtr>& parameters = ptr->machine->getParameters();
for (auto& para : parameters) {
para->load(is);
}
*machine = ptr;
return kPD_NO_ERROR;
}
paddle_error paddle_gradient_machine_destroy(paddle_gradient_machine machine) {
delete cast(machine);
return kPD_NO_ERROR;
......
......@@ -36,6 +36,18 @@ typedef void* paddle_gradient_machine;
PD_API paddle_error paddle_gradient_machine_create_for_inference(
paddle_gradient_machine* machine, void* modelConfigProtobuf, int size);
/**
* @brief Create a gradient machine used for model inference, using config with
* parameters which is generated by `paddle merge_model`.
* @param [out] machine that used for model inference.
* @param [in] mergedModel
* @param [in] size
* @return paddle_error
*/
PD_API paddle_error
paddle_gradient_machine_create_for_inference_with_parameters(
paddle_gradient_machine* machine, void* mergedModel, uint64_t size);
/**
* @brief Load parameter from disk.
* @param machine Gradient Machine.
......
......@@ -10,5 +10,5 @@ target_include_directories(capi_test_gradientMachine PUBLIC
${PADDLE_CAPI_INC_PATH})
target_link_libraries(capi_test_gradientMachine paddle_capi)
add_test(NAME capi_test_gradientMachine
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/capi/tests)
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/capi/tests)
......@@ -31,6 +31,11 @@ py_proto_compile(framework_py_proto SRCS framework.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto/
COMMENT "Copy generated python proto into directory paddle/v2/framework/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward)
......@@ -39,9 +44,12 @@ if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mul_op
rowwise_add_op
sigmoid_op
softmax_op
mean_op
cross_entropy_op
recurrent_op
......
......@@ -31,7 +31,7 @@ static void ForEachVarName(Map& names, T callback) {
}
static bool AllInSet(
const std::unordered_map<std::string, std::vector<std::string>>& names,
const std::map<std::string, std::vector<std::string>>& names,
const std::string& suffix, const std::unordered_set<std::string>& set) {
bool all_in_set = true;
ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
......
......@@ -30,6 +30,7 @@ using DeviceContext = platform::DeviceContext;
class EmptyOp : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(EmptyOp, OperatorBase);
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
};
......@@ -78,6 +79,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
class FcOp : public operators::NetOp {
public:
DEFINE_OPERATOR_CTOR(FcOp, operators::NetOp)
void Init() override {
AddOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}},
......
......@@ -20,7 +20,6 @@ limitations under the License. */
#include "paddle/framework/dim.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/variant.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace framework {
......
......@@ -10,6 +10,7 @@ namespace framework {
class NOP : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(NOP, OperatorBase);
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
......@@ -68,10 +69,9 @@ REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP);
TEST(GradOpBuilder, MutiInOut) {
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"mult_io",
{{"In1", {"in1"}},
{"In2_mult", {"in2_1", "in2_2", "in2_3"}},
{"In3", {"in3"}}},
"mult_io", {{"In1", {"in1"}},
{"In2_mult", {"in2_1", "in2_2", "in2_3"}},
{"In3", {"in3"}}},
{{"Out1", {"out1"}}, {"Out2_mult", {"out2_1", "out2_2"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
......@@ -101,10 +101,9 @@ TEST(GradOpBuilder, MutiInOut) {
TEST(GradOpBuilder, IOIgnoredInGradient) {
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"io_ignored",
{{"In1", {"in1"}},
{"In2_mult", {"in2_1", "in2_2"}},
{"In3_mult", {"in3_1", "in3_2"}}},
"io_ignored", {{"In1", {"in1"}},
{"In2_mult", {"in2_1", "in2_2"}},
{"In3_mult", {"in3_1", "in3_2"}}},
{{"Out1_mult", {"out1_1", "out1_2"}}, {"Out2", {"out2"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
......
......@@ -65,17 +65,17 @@ class OpProtoAndCheckerMaker {
VariableBuilder AddInput(const std::string& name,
const std::string& comment) {
auto input = proto_->mutable_inputs()->Add();
*input->mutable_name() = name;
*input->mutable_comment() = comment;
auto* input = proto_->add_inputs();
input->set_name(name);
input->set_comment(comment);
return VariableBuilder{input};
}
VariableBuilder AddOutput(const std::string& name,
const std::string& comment) {
auto output = proto_->mutable_outputs()->Add();
*output->mutable_name() = name;
*output->mutable_comment() = comment;
auto* output = proto_->add_outputs();
output->set_name(name);
output->set_comment(comment);
return VariableBuilder{output};
}
......@@ -83,17 +83,15 @@ class OpProtoAndCheckerMaker {
TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment,
bool generated = false) {
auto attr = proto_->mutable_attrs()->Add();
*attr->mutable_name() = name;
*attr->mutable_comment() = comment;
auto* attr = proto_->add_attrs();
attr->set_name(name);
attr->set_comment(comment);
attr->set_generated(generated);
attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name);
}
void AddComment(const std::string& comment) {
*(proto_->mutable_comment()) = comment;
}
void AddComment(const std::string& comment) { proto_->set_comment(comment); }
private:
void CheckNoDuplicatedInOutAttrs() {
......@@ -120,7 +118,7 @@ class OpProtoAndCheckerMaker {
class OpRegistry {
using OpCreator = std::function<OperatorBase*()>;
using VarNameMap = std::unordered_map<std::string, std::vector<std::string>>;
using VarNameMap = std::map<std::string, std::vector<std::string>>;
public:
template <typename OpType, typename ProtoMakerType>
......@@ -130,7 +128,7 @@ class OpRegistry {
OpProto& op_proto = OpProtos()[op_type];
auto maker = ProtoMakerType(&op_proto, &op_checker);
maker.Validate();
*op_proto.mutable_type() = op_type;
op_proto.set_type(op_type);
PADDLE_ENFORCE(
op_proto.IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized",
......@@ -231,22 +229,45 @@ class OpRegistry {
}
};
class Registrar {
public:
// In our design, various kinds of classes, e.g., operators and kernels, have
// their corresponding registry and registrar. The action of registration is
// in the constructor of a global registrar variable, which, however, are not
// used in the code that calls package framework, and would be removed from
// the generated binary file by the linker. To avoid such removal, we add
// Touch to all registrar classes and make USE_OP macros to call this
// method. So, as long as the callee code calls USE_OP, the global
// registrar variable won't be removed by the linker.
void Touch() {}
};
template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
class OpRegistrar : public Registrar {
public:
explicit OpRegisterHelper(const char* op_type) {
explicit OpRegistrar(const char* op_type) {
OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
}
};
template <typename GradOpType>
class GradOpRegisterHelper {
class GradOpRegistrar : public Registrar {
public:
GradOpRegisterHelper(const char* op_type, const char* grad_op_type) {
GradOpRegistrar(const char* op_type, const char* grad_op_type) {
OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type);
}
};
template <typename PlaceType, typename KernelType>
class OpKernelRegistrar : public Registrar {
public:
explicit OpKernelRegistrar(const char* op_type) {
OperatorWithKernel::OpKernelKey key;
key.place_ = PlaceType();
OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KernelType);
}
};
/**
* check if MACRO is used in GLOBAL NAMESPACE.
*/
......@@ -257,97 +278,121 @@ class GradOpRegisterHelper {
msg)
/**
* Macro to Register Operator.
* Macro to register Operator.
*/
#define REGISTER_OP(__op_type, __op_class, __op_maker_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \
"REGISTER_OP must be in global namespace"); \
static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
__op_register_##__op_type##__(#__op_type); \
int __op_register_##__op_type##_handle__() { return 0; }
#define REGISTER_OP(op_type, op_class, op_maker_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class> \
__op_registrar_##op_type##__(#op_type); \
int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
return 0; \
}
/**
* Macro to Register Gradient Operator.
* Macro to register Gradient Operator.
*/
#define REGISTER_GRADIENT_OP(__op_type, __grad_op_type, __grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##__op_type##__grad_op_type, \
"REGISTER_GRADIENT_OP must be in global namespace"); \
static ::paddle::framework::GradOpRegisterHelper<__grad_op_class> \
__op_gradient_register_##__op_type##__grad_op_type##__(#__op_type, \
#__grad_op_type); \
int __op_gradient_register_##__op_type##__grad_op_type##_handle__() { \
return 0; \
#define REGISTER_GRADIENT_OP(op_type, grad_op_type, grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##grad_op_type, \
"REGISTER_GRADIENT_OP must be called in global namespace"); \
static ::paddle::framework::GradOpRegistrar<grad_op_class> \
__op_gradient_registrar_##op_type##_##grad_op_type##__(#op_type, \
#grad_op_type); \
int TouchOpGradientRegistrar_##op_type() { \
__op_gradient_registrar_##op_type##_##grad_op_type##__.Touch(); \
return 0; \
}
/**
* Macro to Forbid user register Gradient Operator.
* Macro to register OperatorKernel.
*/
#define NO_GRADIENT(__op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##__op_type##__op_type##_grad, \
"NO_GRADIENT must be in global namespace")
#define REGISTER_OP_KERNEL(op_type, DEVICE_TYPE, place_class, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"REGISTER_OP_KERNEL must be called in global namespace"); \
static ::paddle::framework::OpKernelRegistrar<place_class, __VA_ARGS__> \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__(#op_type); \
int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() { \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__.Touch(); \
return 0; \
}
/**
* Macro to Register OperatorKernel.
* Macro to Forbid user register Gradient Operator.
*/
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##type##_##DEVICE_TYPE##__, \
"REGISTER_OP_KERNEL must be in global namespace"); \
struct __op_kernel_register__##type##__##DEVICE_TYPE##__ { \
__op_kernel_register__##type##__##DEVICE_TYPE##__() { \
::paddle::framework::OperatorWithKernel::OpKernelKey key; \
key.place_ = PlaceType(); \
::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
.reset(new __VA_ARGS__()); \
} \
}; \
static __op_kernel_register__##type##__##DEVICE_TYPE##__ \
__reg_kernel_##type##__##DEVICE_TYPE##__; \
int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
#define NO_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##op_type##_grad, \
"NO_GRADIENT must be called in global namespace")
#define REGISTER_OP_GPU_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
#define REGISTER_OP_CPU_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
/**
* Macro to mark what Operator and Kernel we will use and tell the compiler to
* link them into target.
*/
#define USE_OP_WITHOUT_KERNEL(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_without_kernel_##op_type, \
"USE_OP_WITHOUT_KERNEL must be in global namespace"); \
extern int __op_register_##op_type##_handle__(); \
static int __use_op_ptr_##op_type##_without_kernel__ \
__attribute__((unused)) = __op_register_##op_type##_handle__()
#define USE_OP_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"USE_OP_KERNEL must be in global namespace"); \
extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__ \
__attribute__((unused)) = \
__op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type) \
USE_OP_WITHOUT_KERNEL(op_type); \
USE_OP_KERNEL(op_type, CPU)
#define USE_OP_ITSELF(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_itself_##op_type, \
"USE_OP_ITSELF must be called in global namespace"); \
extern int TouchOpRegistrar_##op_type(); \
static int use_op_itself_##op_type##_ __attribute__((unused)) = \
TouchOpRegistrar_##op_type()
// TODO(fengjiayi): Most ops' gradient op have not been compeleted. So we use
// `NO_GRAD` to disable micro USE_OP_GRADIENT(op_type). Otherwise the code can't
// be compiled. `NO_GRAD` should be removed after all gradient ops are
// compeleted.
#define NO_GRAD
#ifndef NO_GRAD
#define USE_OP_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_gradient_##op_type, \
"USE_OP_GRADIENT must be called in global namespace"); \
extern int TouchOpGradientRegistrar_##op_type(); \
static int use_op_gradient_##op_type##_ __attribute__((unused)) = \
TouchOpGradientRegistrar_##op_type()
#else
#define USE_OP_GRADIENT(op_type)
#endif
#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"USE_OP_DEVICE_KERNEL must be in global namespace"); \
extern int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE(); \
static int use_op_kernel_##op_type##_##DEVICE_TYPE##_ \
__attribute__((unused)) = \
TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE()
// TODO(fengjiayi): The following macros seems ugly, do we have better method?
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
#define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
#else
#define USE_OP(op_type) \
USE_OP_CPU(op_type); \
USE_OP_KERNEL(op_type, GPU)
#define USE_OP_KERNEL(op_type) \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_DEVICE_KERNEL(op_type, GPU)
#endif
#define USE_NO_GRAD_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)
#define USE_CPU_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_GRADIENT(op_type)
#define USE_OP(op_type) \
USE_NO_GRAD_OP(op_type); \
USE_OP_GRADIENT(op_type)
} // namespace framework
} // namespace paddle
......@@ -7,6 +7,7 @@ namespace paddle {
namespace framework {
class CosineOp : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(CosineOp, OperatorBase);
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
void InferShape(const Scope& scope) const override {}
......@@ -27,6 +28,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class MyTestOp : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(MyTestOp, OperatorBase);
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
......
......@@ -64,6 +64,17 @@ class ExecutionContext;
*/
class OperatorBase {
public:
using VarNameMap = std::map<std::string, std::vector<std::string>>;
OperatorBase() = default;
OperatorBase(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {}
OperatorBase(const OperatorBase& o) = delete;
OperatorBase& operator=(const OperatorBase& o) = delete;
OperatorBase(OperatorBase&& o) = delete;
virtual ~OperatorBase() {}
template <typename T>
......@@ -96,9 +107,9 @@ class OperatorBase {
//! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables.
const std::vector<std::string>& Inputs(const std::string& name) const;
//! Get a output with argument's name described in `op_proto`
const std::string& Output(const std::string& name) const;
//! Get an output which has multiple variables.
......@@ -134,20 +145,32 @@ class OperatorBase {
return ret_val;
}
std::string Type() const { return type_; }
const AttributeMap& Attrs() const { return attrs_; }
public:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs)
// O (Outputs)
// OG (Output Gradients)
std::unordered_map<std::string, std::vector<std::string>> inputs_;
std::map<std::string, std::vector<std::string>> inputs_;
// NOTE: in case of OpGrad, outputs_ contains
// IG (Inputs Gradients)
std::unordered_map<std::string, std::vector<std::string>> outputs_;
std::map<std::string, std::vector<std::string>> outputs_;
AttributeMap attrs_;
};
#define DEFINE_OPERATOR_CTOR(Class, ParentClass) \
public: \
Class() : ParentClass() { /* TODO(yi): This constructor is to be removed. */ \
} \
Class(const std::string& type, const VarNameMap& inputs, \
const VarNameMap& outputs, \
const paddle::framework::AttributeMap& attrs) \
: ParentClass(type, inputs, outputs, attrs) {}
class InferShapeContext {
public:
InferShapeContext(const OperatorBase& op, const Scope& scope)
......@@ -287,6 +310,8 @@ class OpKernel {
class OperatorWithKernel : public OperatorBase {
public:
DEFINE_OPERATOR_CTOR(OperatorWithKernel, OperatorBase)
struct OpKernelKey {
platform::Place place_;
......
......@@ -22,6 +22,8 @@ namespace framework {
static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase {
DEFINE_OPERATOR_CTOR(OpWithoutKernelTest, framework::OperatorBase)
public:
void Init() override { x = 1; }
void InferShape(const Scope& scope) const override {}
......@@ -102,6 +104,7 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel {
DEFINE_OPERATOR_CTOR(OpWithKernelTest, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {}
};
......
......@@ -30,16 +30,15 @@ limitations under the License. */
namespace py = pybind11;
USE_OP(add_two);
USE_OP_CPU(onehot_cross_entropy);
USE_OP_WITHOUT_KERNEL(fc);
USE_OP(sgd);
USE_CPU_OP(onehot_cross_entropy);
USE_NO_GRAD_OP(sgd);
USE_OP(mul);
USE_OP(mean);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
USE_OP(fill_zeros_like);
USE_OP_WITHOUT_KERNEL(recurrent_op);
USE_OP_ITSELF(recurrent_op);
USE_OP(gaussian_random);
USE_OP(uniform_random);
......@@ -58,10 +57,17 @@ void ExposeOperator(ClassType &m) {
})
.def("outputs",
[](const typename ClassType::type &op)
-> std::unordered_map<std::string, std::vector<std::string>> {
return op.outputs_;
-> std::map<std::string, std::vector<std::string>> {
return op.outputs_;
})
.def("inputs",
[](const typename ClassType::type &op) { return op.inputs_; })
.def("__str__", &ClassType::type::DebugString)
.def("no_intermediate_outputs",
[](const typename ClassType::type &op) {
return op.OutputVars(false);
})
.def("__str__", &ClassType::type::DebugString);
.def("support_gpu", &ClassType::type::SupportGPU);
}
static size_t UniqueIntegerGenerator() {
......
......@@ -38,10 +38,11 @@ if(WITH_GPU)
add_simple_unittest(RowConvOpTest)
add_simple_unittest(BlockExpandOpTest)
add_simple_unittest(CropOpTest)
add_simple_unittest(DepthwiseConvOpTest)
endif()
add_simple_unittest(ConvOpTest)
add_simple_unittest(Im2ColTest)
add_simple_unittest(GemmConvOpTest)
endif()
add_style_check_target(paddle_function ${h_files})
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"
namespace paddle {
enum TestType {
kForwardTest = 0,
kBackwardInputTest = 1,
kBackwardFilterTest = 2,
};
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
TestType type,
bool useGroups = true,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64}) {
if (inputChannels > outputChannels) break;
size_t groups;
if (!useGroups) {
groups = 1;
} else {
if (outputChannels % inputChannels != 0) continue;
groups = inputChannels;
}
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", algo));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter;
if (groups > 1)
filter = TensorShape({groups,
outputChannels / groups,
inputChannels / groups,
filterSize,
filterSize});
else
filter = TensorShape({outputChannels,
inputChannels,
filterSize,
filterSize});
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
ADD_TO);
test.run();
}
}
}
}
}
}
}
}
}
};
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
ConvolutionTest2(const std::string& conv1,
const std::string& conv2,
TestType type,
bool useGroups = true,
std::string algo = "auto") {
for (size_t batchSize : {16}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {7}) {
size_t groups;
if (!useGroups) {
groups = 1;
} else {
if (outputChannels % inputChannels != 0) continue;
groups = inputChannels;
}
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) /
stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", algo));
TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter;
if (groups > 1)
filter = TensorShape({groups,
outputChannels / groups,
inputChannels / groups,
filterHeight,
filterWidth});
else
filter = TensorShape({outputChannels,
inputChannels,
filterHeight,
filterWidth});
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};
if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
ADD_TO);
test.run();
}
}
}
}
}
}
}
}
}
};
// ======Start Convolution TEST======
TEST(Forward, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
}
#ifndef PADDLE_ONLY_CPU
TEST(Forward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
}
TEST(BackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU",
"GemmConvGradInput-GPU",
kBackwardInputTest,
false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU",
"GemmConvGradInput-GPU",
kBackwardInputTest,
false);
}
TEST(BackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU",
"GemmConvGradFilter-GPU",
kBackwardFilterTest,
false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU",
"GemmConvGradFilter-GPU",
kBackwardFilterTest,
false);
}
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConvForward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
}
TEST(DepthwiseConvBackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU",
"DepthwiseConvGradInput-GPU",
kBackwardInputTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU",
"DepthwiseConvGradInput-GPU",
kBackwardInputTest);
}
TEST(DepthwiseConvBackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU",
"DepthwiseConvGradFilter-GPU",
kBackwardFilterTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU",
"DepthwiseConvGradFilter-GPU",
kBackwardFilterTest);
}
#endif
// ======End DepthwiseConvolution TEST======
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "FunctionTest.h"
namespace paddle {
template <DeviceType DType1, DeviceType DType2>
void forward(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
}
template <DeviceType DType1, DeviceType DType2>
void backward_input(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
}
template <DeviceType DType1, DeviceType DType2>
void backward_filter(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO);
test.run();
}
template <DeviceType DType1, DeviceType DType2>
using Function = void (*)(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output);
/**
* \brief A basic convolution function test interface.
*
* \param conv1 type name of convolution function 1.
* \param conv2 type name of convolution function 2.
* \param function test function, can be one of the forward, backward_input
* backward_filter function.
* Example:
* 1. Compare GemmConv's CPU and GPU implementation:
* Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
* "GemmConv-CPU", "GemmConv-GPU", forward);
*/
template <DeviceType DType1, DeviceType DType2>
void Convolution(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {1, 5}) {
for (size_t inputSize : {7, 14, 31}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 16}) {
for (size_t outputChannels : {3, 16}) {
if (outputChannels < inputChannels) continue;
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for
* image height is not equal image width.
*/
template <DeviceType DType1, DeviceType DType2>
void Convolution2(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {4}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {7}) {
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter{
outputChannels, inputChannels, filterHeight, filterWidth};
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for depthwise convolution.
*/
template <DeviceType DType1, DeviceType DType2>
void DepthwiseConvolution(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {3, 4}) {
for (size_t inputChannels : {32}) {
for (size_t outputChannels : {32, 64}) {
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
// NNPACK only supports stride = 1 if batchSize > 1,
// and there has some bug when batchSize > 1 and groups != 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1)
break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
size_t groups = inputChannels;
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{groups,
outputChannels / groups,
inputChannels / groups,
filterSize,
filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ConvOpTest.h"
namespace paddle {
#ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConv, Forward) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "DepthwiseConv-GPU", forward);
}
TEST(DepthwiseConv, BackwardInput) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "DepthwiseConvGradInput-GPU", backward_input);
}
TEST(DepthwiseConv, BackwardFilter) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "DepthwiseConvGradFilter-GPU", backward_filter);
}
#endif
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ConvOpTest.h"
namespace paddle {
TEST(GemmConv, NaiveConv) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"NaiveConv-CPU", "GemmConv-CPU", forward);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"NaiveConv-CPU", "GemmConv-CPU", forward);
}
#ifndef PADDLE_ONLY_CPU
TEST(GemmConv, Forward) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "GemmConv-GPU", forward);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "GemmConv-GPU", forward);
}
TEST(GemmConv, BackwardInput) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
}
TEST(GemmConv, BackwardFilter) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
}
#endif
} // namespace paddle
......@@ -196,30 +196,30 @@ public:
CHECK_EQ(status, nnp_status_success);
}
} else {
for (size_t g = 0; g < groups_; g++) {
// only supports stride = 1
CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1);
nnp_status status =
nnp_convolution_output(algorithm_,
batchSize,
inputChannels / groups_,
outputChannels / groups_,
inputSize,
padding,
kernelSize,
inputData + inputOffset * g,
filterData + filterOffset * g,
nullptr, /* bias */
outputData + outputOffset * g,
bufferPtr,
sizePtr,
nnp_activation_identity,
nullptr,
threadpool_, /* threadpool */
nullptr);
CHECK_EQ(status, nnp_status_success);
}
// only supports stride = 1
CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1);
// TODO(hedaoyuan): There has some bug when batchSize > 1 and groups_ > 1.
CHECK_EQ(groups_, static_cast<size_t>(1));
nnp_status status = nnp_convolution_output(algorithm_,
batchSize,
inputChannels,
outputChannels,
inputSize,
padding,
kernelSize,
inputData,
filterData,
nullptr, /* bias */
outputData,
bufferPtr,
sizePtr,
nnp_activation_identity,
nullptr,
threadpool_, /* threadpool */
nullptr);
CHECK_EQ(status, nnp_status_success);
}
}
......
......@@ -13,87 +13,18 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/function/Function.h"
#include "paddle/function/FunctionTest.h"
DEFINE_string(algo,
"auto",
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
"implicit-gemm, or direct) for computing convolution of NNPACK.");
#include "paddle/function/ConvOpTest.h"
namespace paddle {
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
if (algo == "direct" && filterSize != 1) continue; \
if (algo == "direct" && batchSize != 1) continue; \
if (algo == "wt8x8" && filterSize != 3) continue; \
if (algo == "implicit-gemm" && batchSize != 1) continue; \
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64, 128}) {
if (inputChannels < outputChannels) break;
for (size_t stride : {1, 2}) {
// if batchSize > 1 NNPACKConv only supports stride = 1
if (batchSize > 1 && stride > 1) break;
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
IS_NNPACK_SUPPORT(algo, filterSize, stride);
LOG(INFO) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));
TensorShape shape0{
batchSize, inputChannels, inputSize, inputSize};
TensorShape shape1{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape shape2{
batchSize, outputChannels, outputSize, outputSize};
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
test.run();
}
}
}
}
}
}
}
}
};
TEST(NNPACK, Forward) {
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"GemmConv-CPU", "NNPACKConv-CPU", forward);
}
TEST(Convolution, NNPACK) {
// NNPACK only supports stride = 1
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo);
TEST(NNPACK, Depthwise) {
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
"GemmConv-CPU", "NNPACKConv-CPU", forward);
}
} // namespace paddle
......@@ -23,6 +23,17 @@ endmacro()
filter_test(GSERVER_HEADER)
filter_test(GSERVER_SOURCES)
if(NOT WITH_MKLDNN)
file(GLOB_RECURSE DNN_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLDNN*.h")
file(GLOB_RECURSE DNN_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLDNN*.cpp")
list(REMOVE_ITEM GSERVER_HEADER ${DNN_HEADER})
list(REMOVE_ITEM GSERVER_SOURCES ${DNN_SOURCES})
message(STATUS "Skip compiling with MKLDNNLayers and MKLDNNActivations")
else()
message(STATUS "Compile with MKLDNNLayers and MKLDNNActivations")
endif()
if(NOT WITH_GPU)
list(REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h
......
......@@ -112,7 +112,6 @@ BEGIN_DEFINE_ACTIVATION(softmax)
private:
MatrixPtr sftMaxSum_;
MatrixPtr sftMaxDot_;
MatrixPtr one_;
public:
Error __must_check forward(Argument& act) {
......@@ -138,14 +137,6 @@ Error __must_check backward(Argument& act) {
1,
/* trans */ false,
useGpu(act.deviceId));
if (!one_ || one_->getWidth() != outputG->getWidth()) {
Matrix::resizeOrCreate(one_,
1,
outputG->getWidth(),
/* trans */ false,
useGpu(act.deviceId));
one_->one();
}
sftMaxDot_->dotMul(*outputG, *outputV);
sftMaxSum_->colMerge(*sftMaxDot_);
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "mkldnn.hpp"
namespace paddle {
typedef enum {
MKLDNN_BASE = 1, // basical info of MKLDNN
MKLDNN_TESTS = 1, // gtest info of MKLDNN
MKLDNN_SIZES = 2, // size info of MKLDNN
MKLDNN_FMTS = 3, // format info of MKLDNN
MKLDNN_ALL = 4, // show all info of MKLDNN
} MKLDNN_LOG_LEVEL;
/**
* @brief MKLDNN CPU engine.
*
*/
class CPUEngine {
public:
static CPUEngine& Instance() {
// Thread-safe in C++11.
static CPUEngine myInstance;
return myInstance;
}
// Disallow copy or move
CPUEngine(const CPUEngine&) = delete; // Copy constructor
CPUEngine(CPUEngine&&) = delete; // Move constructor
CPUEngine& operator=(const CPUEngine&) = delete; // Copy assignment
CPUEngine& operator=(CPUEngine&&) = delete; // Move assignment
mkldnn::engine& getEngine() { return cpuEngine_; }
protected:
CPUEngine() : cpuEngine_(mkldnn::engine::cpu, 0) {}
// CPUEngine() : cpuEngine_(mkldnn::engine::cpu_lazy, 0) {}
~CPUEngine() {}
private:
mkldnn::engine cpuEngine_;
};
/**
* @brief MKLDNN Stream.
*
*/
class MKLDNNStream {
public:
MKLDNNStream() : ready_(false) { resetState(); }
virtual ~MKLDNNStream() {}
/**
* @brief Submit stream
* @param prims The primitives vector
* @param block Waiting for the stream to complete
*/
void submit(std::vector<mkldnn::primitive>& prims, bool block = true) {
resetState();
stream_->submit(prims).wait(block);
ready_ = false;
}
/**
* @brief Reset the mkldnn stream
*/
void resetState() {
if (ready_) {
return;
}
// TODO(TJ): change me when mkldnn have method to reset this state
// stream_.reset(new mkldnn::stream(mkldnn::stream::kind::lazy));
stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager));
ready_ = true;
}
private:
bool ready_;
std::shared_ptr<mkldnn::stream> stream_;
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNFcLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;
namespace paddle {
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
CHECK_EQ(inputLayers_.size(), parameters_.size());
CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";
// output size, cat not be changed
oc_ = getSize();
oh_ = 1;
ow_ = 1;
// input size can not change in FC
iLayerSize_ = inputLayers_[0]->getSize();
CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);
// create weight
weight_ =
std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));
// create biases
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
}
return true;
}
void MKLDNNFcLayer::convertWeightsFromPaddle() {
if (FLAGS_use_mkldnn_wgt) {
return;
}
if (hasInitedWgt_) {
return;
}
// The weight_ is transposed from initial paddle weight
MatrixPtr paddleWgt = Matrix::create(
weight_->getW()->getData(), iLayerSize_, oc_, false, false);
// TODO(TJ): remove this print when do not need differ weights
std::ostringstream ostr;
paddleWgt->print(ostr);
VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str();
// The mkldnn weight is transposed from initial paddle matrix
MatrixPtr paddleWgtT;
paddleWgt->transpose(paddleWgtT, true);
weight_->getW()->copyFrom(*paddleWgtT);
hasInitedWgt_ = true;
}
void MKLDNNFcLayer::convertWeightsToPaddle() {
MatrixPtr dnnWgt = weight_->getW();
MatrixPtr paddleWgt;
dnnWgt->transpose(paddleWgt, true);
// copy paddle weight and override on weight_
MatrixPtr dnnWgtT = Matrix::create(
dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false);
dnnWgtT->copyFrom(*paddleWgt);
}
void MKLDNNFcLayer::reshape() {
const Argument& input = getInput(0);
int batchSize = input.getBatchSize();
if (bs_ == batchSize) {
return;
}
bs_ = batchSize;
ih_ = input.getFrameHeight();
iw_ = input.getFrameWidth();
if (ih_ == 0) {
ih_ = 1;
}
if (iw_ == 0) {
iw_ = 1;
}
hasSpatial_ = true;
if (ih_ == 1 && iw_ == 1) {
hasSpatial_ = false;
}
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
ic_ = iLayerSize_ / (ih_ * iw_);
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
CHECK_EQ(size_t(oc_), getSize());
printSizeInfo();
// reset output
output_.setFrameHeight(oh_);
output_.setFrameWidth(ow_);
resetOutput(bs_, oc_);
// reset mkldnn forward
resetFwd();
needResetBwd_ = true;
convertWeightsFromPaddle();
}
void MKLDNNFcLayer::resetFwd() {
bool hasBias = biases_ && biases_->getW();
real* iData = getInputValue(0)->getData();
real* oData = getOutputValue()->getData();
real* wData = weight_->getW()->getData();
real* bData = hasBias ? biases_->getW()->getData() : NULL;
// TODO(TJ): below create should be covered in MkldnnMatrix
// create memory desc
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
: createMD({bs_, ic_}, format::nc);
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
: createMD({oc_, ic_}, format::oi);
memory::desc bMD = bData != NULL ? createMD({oc_}, format::x)
: createMD({}, format::format_undef);
memory::desc oMD = createMD({bs_, oc_}, format::nc);
// create memory primitive desc and memory self
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
wgtVal_.reset(new memory(memory::primitive_desc(wMD, engine_), wData));
outVal_.reset(new memory(memory::primitive_desc(oMD, engine_), oData));
prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = bData != NULL ? fc_fwd::desc(pk, iMD, wMD, bMD, oMD)
: fc_fwd::desc(pk, iMD, wMD, oMD);
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
if (bData != NULL) {
biasVal_.reset(new memory(memory::primitive_desc(bMD, engine_), bData));
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
} else {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
}
pipelineFwd_.clear();
pipelineFwd_.push_back(*fwd_);
}
void MKLDNNFcLayer::resetBwd() {
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
bool hasBias = biases_ && biases_->getWGrad();
real* iData = getInputValue(0)->getData();
real* iDiff = getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL;
real* oDiff = getOutputGrad()->getData();
real* wDiff = weight_->getWGrad()->getData();
real* bDiff = hasBias ? biases_->getWGrad()->getData() : NULL;
/// backward weight
// create memory desc for backward memory
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
: createMD({bs_, ic_}, format::nc);
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
: createMD({oc_, ic_}, format::oi);
memory::desc oMD = createMD({bs_, oc_}, format::nc);
memory::desc bMD = bDiff != NULL ? createMD({oc_}, format::x)
: createMD({}, format::format_undef);
if (inVal_) {
// update data
inVal_->set_data_handle(iData);
} else {
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
}
// create memory primitive desc and memory self
wgtGrad_.reset(new memory(memory::primitive_desc(wMD, engine_), wDiff));
outGrad_.reset(new memory(memory::primitive_desc(oMD, engine_), oDiff));
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, iMD, wMD, oMD);
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
fc_bwdWgt::desc bwdWgtDesc = bDiff != NULL
? fc_bwdWgt::desc(iMD, wMD, bMD, oMD)
: fc_bwdWgt::desc(iMD, wMD, oMD);
fc_bwdWgt::primitive_desc bwdWgtPD =
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
if (bDiff != NULL) {
biasGrad_.reset(new memory(memory::primitive_desc(bMD, engine_), bDiff));
bwdWgt_.reset(
new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
} else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
}
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwdWgt_);
/// backward data
if (iDiff == NULL) {
return;
}
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(iMD, wMD, oMD);
fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
inGrad_.reset(new memory(memory::primitive_desc(iMD, engine_), iDiff));
CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
pipelineBwd_.push_back(*bwdData_);
}
void MKLDNNFcLayer::forward(PassType passType) {
Layer::forward(passType);
reshape();
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
// update input data
// since it might be changed if this is after data layer
real* iData = getInputValue(0)->getData();
inVal_->set_data_handle(iData);
// just submit forward pipeline
stream_->submit(pipelineFwd_);
}
/* activation */ {
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
}
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
/* Do derivation */ {
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
resetBwd();
// update diff
real* oDiff = getOutputGrad()->getData();
outGrad_->set_data_handle(oDiff);
// just sumbmit backward pipeline
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
/**
* @brief A subclass of MKLDNNLayer fc layer.
*
* The config file api is mkldnn_fc
*/
class MKLDNNFcLayer : public MKLDNNLayer {
protected:
// input layer size, can not be change after init
size_t iLayerSize_; // == ic * ih * iw
// if has already init the weight
bool hasInitedWgt_;
// if input layer has image size info (ih>1 && iw>1)
bool hasSpatial_;
// fc weight and bias
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_;
public:
explicit MKLDNNFcLayer(const LayerConfig& config)
: MKLDNNLayer(config), hasInitedWgt_(false), hasSpatial_(true) {}
~MKLDNNFcLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
/**
* reshape the input image sizes
* and reset output buffer size
* and reset mkldnn forward
*/
void reshape();
/**
* reset the forward primitve and memory
* only would be called when input size changes
*/
void resetFwd();
/**
* reset the backward primitve and memory for mkldnn fc
* only would be called when needed
*/
void resetBwd();
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "Layer.h"
#include "MKLDNNBase.h"
#include "mkldnn.hpp"
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
namespace paddle {
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
/**
* @brief Base class of MKLDNNlayer.
*
*/
class MKLDNNLayer : public Layer {
protected:
// batch size
int bs_;
// input image channel, height and width
int ic_, ih_, iw_;
// output image channel, height and width
int oc_, oh_, ow_;
// backward also need reset after reset forward handle
bool needResetBwd_;
// mkldnn engine, stream and primivtives
mkldnn::engine engine_;
std::shared_ptr<MKLDNNStream> stream_;
std::shared_ptr<mkldnn::primitive> fwd_;
std::shared_ptr<mkldnn::primitive> bwdWgt_;
std::shared_ptr<mkldnn::primitive> bwdData_;
std::vector<mkldnn::primitive> pipelineFwd_;
std::vector<mkldnn::primitive> pipelineBwd_;
// TODO(TJ): change below memory as MKLDNNMatrixPtr type
std::shared_ptr<mkldnn::memory> inVal_;
std::shared_ptr<mkldnn::memory> inGrad_;
std::shared_ptr<mkldnn::memory> outVal_;
std::shared_ptr<mkldnn::memory> outGrad_;
std::shared_ptr<mkldnn::memory> wgtVal_;
std::shared_ptr<mkldnn::memory> wgtGrad_;
std::shared_ptr<mkldnn::memory> biasVal_;
std::shared_ptr<mkldnn::memory> biasGrad_;
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
bs_(0),
ic_(0),
ih_(0),
iw_(0),
oc_(0),
oh_(0),
ow_(0),
needResetBwd_(true),
engine_(mkldnn::engine::cpu, 0),
stream_(nullptr),
fwd_(nullptr),
bwdWgt_(nullptr),
bwdData_(nullptr) {}
~MKLDNNLayer() {}
virtual bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
<< "Please set WITH_MKLDNN=ON "
<< "and set use_mkldnn=True";
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
// TODO(TJ): deivecId
return true;
}
/**
* convert weight from paddle format to mkldnn format
* weight_ will be override
*/
virtual void convertWeightsFromPaddle() {}
/**
* convert mkldnn weight to paddle format
* weight_ will be override
*/
virtual void convertWeightsToPaddle() {}
/**
* print info about sizes
*/
virtual void printSizeInfo() {
VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
<< ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
<< ", oh: " << oh_ << ", ow: " << ow_;
}
// TODO(TJ): move to MkldnnMatrix
// create memory desc
inline mkldnn::memory::desc createMD(
mkldnn::memory::dims dims,
mkldnn::memory::format fmt,
mkldnn::memory::data_type type = mkldnn::memory::data_type::f32) {
// TODO(TJ): isFmtSuppoted(fmt)
return mkldnn::memory::desc(dims, type, fmt);
}
};
} // namespace paddle
......@@ -9,7 +9,7 @@ add_unittest_without_exec(test_ProtoDataProvider
# mkdir will get error.
add_test(NAME test_ProtoDataProvider
COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider
WORKING_DIRECTORY ${PROJ_ROOT}/paddle)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
################# test_LayerGrad #######################
add_unittest_without_exec(test_LayerGrad
......@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad
add_test(NAME test_LayerGrad
COMMAND test_LayerGrad)
########## test_Mkldnn layers and activations ##########
if(WITH_MKLDNN)
add_unittest_without_exec(test_MKLDNN
test_MKLDNN.cpp
MKLDNNTester.cpp
LayerGradUtil.cpp)
add_test(NAME test_MKLDNN COMMAND test_MKLDNN)
endif()
################ test_CRFLayerGrad ####################
add_unittest_without_exec(test_CRFLayerGrad
test_CRFLayerGrad.cpp
......@@ -92,8 +101,8 @@ if(WITH_PYTHON)
test_PyDataProvider.cpp)
add_test(NAME test_PyDataProvider
COMMAND .set_python_path.sh -d ./gserver/tests:${PROJ_ROOT}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider
WORKING_DIRECTORY ${PROJ_ROOT}/paddle)
COMMAND .set_python_path.sh -d ./gserver/tests:${PADDLE_SOURCE_DIR}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif()
############### test_RecurrentLayer #######################
......@@ -106,7 +115,7 @@ if(NOT WITH_DOUBLE)
add_test(NAME test_WarpCTCLayer
COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_WarpCTCLayer --warpctc_dir=${WARPCTC_LIB_DIR}
WORKING_DIRECTORY ${PROJ_ROOT}/paddle)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif()
############### test_RecurrentGradientMachine ###############
......@@ -116,20 +125,20 @@ add_unittest_without_exec(test_RecurrentGradientMachine
test_RecurrentGradientMachine.cpp)
add_test(NAME test_RecurrentGradientMachine
COMMAND .set_python_path.sh -d
${PROJ_ROOT}/python:${PROJ_ROOT}/paddle/gserver/tests
${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests
${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine
WORKING_DIRECTORY ${PROJ_ROOT}/paddle)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
add_unittest_without_exec(test_NetworkCompare
test_NetworkCompare.cpp)
if(WITH_GPU)
add_test(NAME test_NetworkCompare
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true
WORKING_DIRECTORY ${PROJ_ROOT}/paddle)
COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
else()
add_test(NAME test_NetworkCompare
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false
WORKING_DIRECTORY ${PROJ_ROOT}/paddle)
COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif()
......@@ -137,6 +146,6 @@ add_unittest_without_exec(test_PyDataProvider2
test_PyDataProvider2.cpp)
add_test(NAME test_PyDataProvider2
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/paddle/gserver/tests:${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2
WORKING_DIRECTORY ${PROJ_ROOT}/paddle
COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/paddle/gserver/tests:${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
)
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle {
// init data layer and test layer of both dnn and reference
void MKLDNNTester::reset(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize) {
const bool trans = false;
const bool useGpu = false;
// clear
configs_.clear();
layerNames_.clear();
dataLayers_.clear();
datas_.clear();
layerMaps_.clear();
parameters_.clear();
testLayers_.clear();
// resize
configs_.resize(NUM);
layerNames_.resize(NUM);
dataLayers_.resize(NUM);
datas_.resize(NUM);
layerMaps_.resize(NUM);
parameters_.resize(NUM);
testLayers_.resize(NUM);
// reset configs and layer names
configs_[DNN] = dnn;
configs_[REF] = ref;
layerNames_[DNN] = "mkldnn"; // the first is mkldnn layer
layerNames_[REF] = "reference"; // second is reference layer
// reset others
for (size_t i = 0; i < NUM; ++i) {
configs_[i].layerConfig.set_name(layerNames_[i]);
initDataLayer(configs_[i],
&(dataLayers_[i]),
&(datas_[i]),
&(layerMaps_[i]),
layerNames_[i],
batchSize,
trans,
useGpu);
initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF];
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
setInputImgSize();
}
void MKLDNNTester::setInputImgSize() {
for (size_t n = 0; n < dataLayers_.size(); ++n) {
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
// TODO(TJ): fix me when concat and elewise ready
dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
}
}
}
// init randome parameters of ref, and copy to mkldnn
void MKLDNNTester::randomWgtDatas() {
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
for (size_t i = 0; i < parameters_[REF].size(); ++i) {
const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
parameters_[REF][i]->randomize();
dnnValue->copyFrom(*refValue);
VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
printVector(dnnValue);
}
}
// random botdata of ref layer and copy same to mkldnn
void MKLDNNTester::randomBotDatas() {
CHECK_EQ(dataLayers_.size(), NUM);
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
dataLayers_[DNN][i]->getOutputValue()->copyFrom(
*(dataLayers_[REF][i]->getOutputValue()));
VLOG(lvl_) << "Input " << i << " data:";
printMatrix(dataLayers_[REF][i]->getOutputValue());
}
}
void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform();
dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad());
}
void MKLDNNTester::checkForward() {
printTopDatas();
double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward";
EXPECT_LE(fabs(delta), eps_);
}
void MKLDNNTester::checkBackwardData() {
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
printMatrix(dnnDiff);
VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
printMatrix(refDiff);
double delta = compareMatrix(dnnDiff, refDiff);
EXPECT_LE(fabs(delta), eps_);
// TODO(TJ): uncomment me when batch norm ready
// if (isBN) {
// // the other two inputs in batch norm are for moving mean and var
// break;
// }
}
}
void MKLDNNTester::checkBackwardWgts() {
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
const MKLDNNLayerPtr dnnlayer =
std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
CHECK(dnnlayer);
dnnlayer->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
printVector(dnn);
VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
printVector(ref);
double delta = compareVector(dnn, ref);
EXPECT_LE(fabs(delta), eps_);
}
VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
restoreWgt(dnnWgts, parameters_[DNN]);
}
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
vector<VectorPtr>& to) {
const bool useGpu = false;
to.resize(from.size());
for (size_t i = 0; i < to.size(); ++i) {
const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
to[i] = Vector::create(wgt->getSize(), useGpu);
to[i]->copyFrom(*wgt);
}
}
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
vector<ParameterPtr>& to) {
CHECK_EQ(from.size(), to.size());
for (size_t i = 0; i < from.size(); ++i) {
const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
wgt->copyFrom(*from[i]);
}
}
// clear parameters grad
void MKLDNNTester::clearWgtDiffs() {
for (size_t n = 0; n < parameters_.size(); ++n) {
for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) {
grad->zeroMem();
}
}
}
}
void MKLDNNTester::clearBotDiffs() {
// dnn and ref
for (size_t n = 0; n < dataLayers_.size(); ++n) {
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
}
void MKLDNNTester::clearBotDiffs(int n) {
CHECK_LT(n, NUM);
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
void MKLDNNTester::clearTopDatas() {
for (size_t i = 0; i < testLayers_.size(); ++i) {
testLayers_[i]->getOutputValue()->zeroMem();
}
}
void MKLDNNTester::printTopDatas() {
if (!log_) {
return;
}
for (int n = 0; n < NUM; ++n) {
VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
printMatrix(testLayers_[n]->getOutputValue());
}
}
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
if (!log_) {
return;
}
std::ostringstream ostr;
m->print(ostr);
VLOG(lvl_) << std::endl << ostr.str();
}
void MKLDNNTester::printVector(const VectorPtr& v) {
if (!log_) {
return;
}
std::ostringstream ostr;
v->print(ostr, v->getSize());
VLOG(lvl_) << std::endl << ostr.str();
}
double MKLDNNTester::getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate,
const float thres) {
double delta = 0, sum = 0;
int failCnt = 0;
const double eps = 1e-5;
double maxOut = 0;
for (size_t i = 0; i < len; ++i) {
double ref = fabs(d2[i]);
double diff = fabs(d1[i] - d2[i]);
delta += diff;
sum += ref;
if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
maxOut = std::max(maxOut, diff / ref);
failCnt++;
}
}
EXPECT_TRUE(std::isnormal(sum));
EXPECT_FALSE(std::isinf(sum));
EXPECT_FALSE(std::isnan(delta));
VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
<< ", delta: " << delta / sum << ", failCnt:" << failCnt;
return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
CHECK_EQ(v1->getSize(), v2->getSize());
return getDelta(v1->getData(), v2->getData(), v1->getSize());
}
void MKLDNNTester::runOnce() {
// test forward
randomBotDatas();
dnnLayer_->forward(PASS_TRAIN);
refLayer_->forward(PASS_TRAIN);
checkForward();
// test backward
randomTopDiffs();
dnnLayer_->backward(nullptr);
refLayer_->backward(nullptr);
checkBackwardData();
checkBackwardWgts();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
clearBotDiffs(REF);
}
void MKLDNNTester::run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH,
size_t inputImgW,
size_t iter,
float epsilon,
bool log,
int level) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
<< " vs " << ref.layerConfig.type();
ih_ = inputImgH;
iw_ = inputImgW;
iter_ = iter;
eps_ = epsilon;
log_ = log;
lvl_ = level;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt = false;
// reset and run once
reset(dnn, ref, batchSize);
randomWgtDatas();
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt = true;
// after run once the mkldnn weight has been stored in dnnlayer
// then save the weights and restart again
vector<VectorPtr> dnnWgts, refWgts;
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
saveWgt(parameters_[DNN], dnnWgts);
saveWgt(parameters_[REF], refWgts);
// restart again with flag true
reset(dnn, ref, batchSize);
// restore wgt
restoreWgt(dnnWgts, parameters_[DNN]);
restoreWgt(refWgts, parameters_[REF]);
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
namespace paddle {
/**
* @brief test the functionality of Mkldnnlayers
* refer to paddle original function
*/
class MKLDNNTester {
enum {
DNN = 0, // MKLDNN layer
REF = 1, // Reference layer
NUM = 2, // Number of total
};
protected:
std::vector<TestConfig> configs_;
vector<string> layerNames_;
vector<vector<DataLayerPtr>> dataLayers_;
vector<vector<Argument>> datas_;
vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_;
LayerPtr dnnLayer_, refLayer_;
/// run some iterations, all the result should pass
size_t iter_;
/// whether to print out the details
bool log_;
/// vlog level to print the matrix details datas
int lvl_;
/// epsilon
float eps_;
/// input image size, default 1
size_t ih_, iw_;
public:
explicit MKLDNNTester(size_t iter = 3, float epsilon = 1e-4) {
iter_ = iter;
eps_ = epsilon;
log_ = false;
lvl_ = MKLDNN_ALL;
}
~MKLDNNTester() {}
public:
void run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH = 1,
size_t inputImgW = 1,
size_t iter = 3,
float epsilon = 1e-4,
bool log = false,
int level = MKLDNN_ALL);
void setLogLevel(int lvl) { lvl_ = lvl; }
private:
void reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize);
void setInputImgSize();
void runOnce();
void randomWgtDatas();
void randomBotDatas();
void randomTopDiffs();
void checkForward();
void checkBackwardData();
void checkBackwardWgts();
void clearWgtDiffs();
void clearBotDiffs();
void clearBotDiffs(int n); // clear specific layer
void clearTopDatas();
void printTopDatas();
void printMatrix(const MatrixPtr& m);
void printVector(const VectorPtr& v);
void saveWgt(const vector<ParameterPtr>& from, vector<VectorPtr>& to);
void restoreWgt(const vector<VectorPtr>& from, vector<ParameterPtr>& to);
double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2);
double compareVector(const VectorPtr& v1, const VectorPtr& v2);
/**
* Get delta percent
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
*/
double getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate = 1e-3,
const float thres = 0.1);
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
using namespace paddle; // NOLINT
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(use_gpu);
DECLARE_bool(use_mkldnn);
struct testFCDesc {
int bs;
int ic;
int oc;
int ih, iw; // oh == ow == 1
};
void testFcLayer(const testFCDesc& pm) {
const std::string compareTypes[] = {"mkldnn_fc", "fc"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
cfg.layerConfig.set_size(pm.oc);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
/* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)});
cfg.layerConfig.add_inputs();
MKLDNNTester tester;
for (auto biasSize : {pm.oc, 0}) {
cfg.biasSize = biasSize;
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
}
}
TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 2, /*ic*/ 2, /*oc*/ 3, /*ih*/ 1, /*iw*/ 1});
testFcLayer({/*bs*/ 3, /*ic*/ 7, /*oc*/ 19, /*ih*/ 1, /*iw*/ 1});
testFcLayer({/*bs*/ 8, /*ic*/ 16, /*oc*/ 32, /*ih*/ 13, /*iw*/ 13});
testFcLayer({/*bs*/ 4, /*ic*/ 12, /*oc*/ 18, /*ih*/ 13, /*iw*/ 11});
testFcLayer({/*bs*/ 2, /*ic*/ 64, /*oc*/ 32, /*ih*/ 16, /*iw*/ 16});
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
}
// TODO(TJ): add branch test
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
FLAGS_use_gpu = false;
FLAGS_use_mkldnn = true;
initMain(argc, argv);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
return RUN_ALL_TESTS();
}
......@@ -15,13 +15,13 @@
file(GLOB MATH_HEADERS . *.h)
file(GLOB MATH_SOURCES . *.cpp)
set(MATH_SOURCES
"${PROJ_ROOT}/paddle/math/BaseMatrix.cu"
"${PROJ_ROOT}/paddle/math/TrainingAlgorithmOp.cu"
"${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu"
"${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu"
${MATH_SOURCES})
if(NOT WITH_GPU)
# then compile BaseMatrix.cu as c++ file
compile_cu_as_cpp("${PROJ_ROOT}/paddle/math/BaseMatrix.cu")
compile_cu_as_cpp("${PROJ_ROOT}/paddle/math/TrainingAlgorithmOp.cu")
compile_cu_as_cpp("${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu")
compile_cu_as_cpp("${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu")
add_library(paddle_math STATIC
${MATH_SOURCES})
else()
......
......@@ -302,6 +302,10 @@ public:
bool isSparse() const { return true; }
private:
using Matrix::mul;
using Matrix::copyFrom;
using Matrix::rowMax;
using Matrix::print;
using Matrix::subMatrix;
};
} // namespace paddle
......@@ -231,6 +231,9 @@ public:
private:
using Matrix::mul;
using Matrix::copyFrom;
using Matrix::rowMax;
using Matrix::print;
using Matrix::subMatrix;
};
} // namespace paddle
......@@ -61,9 +61,6 @@ op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu)
op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(fc_op
SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor op_registry operator net_op)
cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)
......
......@@ -18,6 +18,8 @@ namespace paddle {
namespace operators {
class AddOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(AddOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
......@@ -43,6 +45,7 @@ The equation is: Out = X + Y
};
class AddOpGrad : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(AddOpGrad, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {}
};
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(OnehotCrossEntropyOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *X = ctx.Input<Tensor>("X");
......@@ -31,6 +32,8 @@ class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
};
class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(OnehotCrossEntropyGradientOp,
framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/net_op.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using OpRegistry = framework::OpRegistry;
class FullyConnectedOp : public NetOp {
public:
void Init() override {
AddOp(OpRegistry::CreateOp("mul",
{
{"X", {Input("X")}}, {"Y", {Input("W")}},
},
{{"Out", {Output("before_act")}}}, {}));
auto b = Input("b");
if (b != framework::kEmptyVarName) {
AddOp(OpRegistry::CreateOp(
"rowwise_add", {{"X", {Output("before_act")}}, {"b", {Input("b")}}},
{{"Out", {Output("before_act")}}}, {}));
}
auto activation = GetAttr<std::string>("activation");
AddOp(OpRegistry::CreateOp(activation, {{"X", {Output("before_act")}}},
{{"Out", {Output("Out")}}}, {}));
CompleteAddOp(false);
}
};
class FullyConnectedOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FullyConnectedOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input of fc operator");
AddInput("W", "the weight of fc operator");
AddInput("b", "the bias of fc operator");
AddOutput("Out", "the output of fc operator");
AddOutput("before_act", "the before activation output of fc operator")
.SetTemporary();
AddAttr<std::string>("activation", "The activation key for fc layer")
.SetDefault("sigmoid")
.InEnum({"sigmoid", "softmax"});
//! TODO(yuyang18): Complete comment;
AddComment("FullyConnected Operator");
}
};
} // namespace operators
} // namespace paddle
USE_OP(mul);
USE_OP(rowwise_add);
USE_OP(sigmoid);
USE_OP(softmax);
namespace ops = paddle::operators;
REGISTER_OP(fc, ops::FullyConnectedOp, ops::FullyConnectedOpMaker);
......@@ -18,6 +18,8 @@ namespace paddle {
namespace operators {
class FillZerosLikeOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(FillZerosLikeOp, framework::OperatorWithKernel);
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::Tensor>("Dst")->Resize(
......
......@@ -43,6 +43,8 @@ class GaussianRandomKernel : public framework::OpKernel {
};
class GaussianRandomOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(GaussianRandomOp, framework::OperatorWithKernel);
protected:
void InferShape(const framework::InferShapeContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0);
......
......@@ -33,15 +33,16 @@ class GaussianRandomKernel : public framework::OpKernel {
int seed = context.op_.GetAttr<int>("seed");
if (seed == 0) {
seed = std::random_device()();
std::random_device rd;
seed = rd();
}
curandGenerator_t g;
PADDLE_ENFORCE(platform::dynload::curandCreateGenerator(
&g, CURAND_RNG_PSEUDO_DEFAULT));
PADDLE_ENFORCE(
platform::dynload::curandSetPseudoRandomGeneratorSeed(g, seed));
curandGenerateNormal(g, data, framework::product(tensor->dims()), mean,
std);
platform::dynload::curandGenerateNormal(
g, data, framework::product(tensor->dims()), mean, std);
}
};
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class MeanOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(MeanOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
......@@ -37,6 +38,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
};
class MeanGradOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(MeanGradOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(framework::GradVarName("X"))
......
......@@ -18,6 +18,8 @@ namespace paddle {
namespace operators {
class MulOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(MulOp, framework::OperatorWithKernel);
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
......@@ -51,6 +53,7 @@ The equation is: Out = X * Y
};
class MulOpGrad : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(MulOpGrad, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {}
std::string DebugString() const override {
......
......@@ -37,6 +37,7 @@ namespace operators {
class NetOp : public framework::OperatorBase {
public:
static const char kAll[];
DEFINE_OPERATOR_CTOR(NetOp, framework::OperatorBase);
/**
* Infer all the operators' input and output variables' shapes, will be called
......
......@@ -12,6 +12,7 @@ static int run_cnt = 0;
class TestOp : public framework::OperatorBase {
public:
DEFINE_OPERATOR_CTOR(TestOp, framework::OperatorBase);
void InferShape(const Scope& scope) const override { ++infer_shape_cnt; }
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
......@@ -21,6 +22,7 @@ class TestOp : public framework::OperatorBase {
class EmptyOp : public framework::OperatorBase {
public:
DEFINE_OPERATOR_CTOR(EmptyOp, framework::OperatorBase);
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, const DeviceContext& dev_ctx) const override {}
};
......
......@@ -101,6 +101,8 @@ class RecurrentGradientAlgorithm {
class RecurrentOp final : public framework::OperatorBase {
public:
DEFINE_OPERATOR_CTOR(RecurrentOp, framework::OperatorBase);
void Init() override;
/**
......@@ -123,6 +125,7 @@ class RecurrentOp final : public framework::OperatorBase {
class RecurrentGradientOp final : public framework::OperatorBase {
public:
DEFINE_OPERATOR_CTOR(RecurrentGradientOp, framework::OperatorBase)
void Init() override;
/**
......
......@@ -251,4 +251,4 @@ TEST(RecurrentOp, LinkMemories) {
USE_OP(add_two);
USE_OP(mul);
USE_OP_WITHOUT_KERNEL(recurrent_op);
USE_OP_ITSELF(recurrent_op);
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class RowWiseAddOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(RowWiseAddOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class SGDOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(SGDOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class SigmoidOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(SigmoidOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
......@@ -36,6 +37,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
};
class SigmoidOpGrad : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(SigmoidOpGrad, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
class SoftmaxOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(SoftmaxOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
......@@ -38,6 +39,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
};
class SoftmaxOpGrad : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(SoftmaxOpGrad, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null");
......
......@@ -46,6 +46,7 @@ class CPUUniformRandomKernel : public framework::OpKernel {
};
class UniformRandomOp : public framework::OperatorWithKernel {
DEFINE_OPERATOR_CTOR(UniformRandomOp, framework::OperatorWithKernel)
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"),
......
......@@ -51,7 +51,8 @@ class GPUUniformRandomKernel : public framework::OpKernel {
unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
if (seed == 0) {
seed = std::random_device()();
std::random_device rd;
seed = rd();
}
T min = static_cast<T>(context.op_.GetAttr<float>("min"));
T max = static_cast<T>(context.op_.GetAttr<float>("max"));
......
......@@ -48,13 +48,13 @@ extern void *cublas_dso_handle;
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \
struct DynLoad__##__name { \
inline template <typename... Args> \
cublasStatus_t operator()(Args... args) { \
return __name(args...); \
} \
}; \
#define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline cublasStatus_t operator()(Args... args) { \
return __name(args...); \
} \
}; \
extern DynLoad__##__name __name
#endif
......
......@@ -55,6 +55,7 @@ extern void *curand_dso_handle;
__macro(curandSetPseudoRandomGeneratorSeed); \
__macro(curandGenerateUniform); \
__macro(curandGenerateUniformDouble); \
__macro(curandGenerateNormal); \
__macro(curandDestroyGenerator);
CURAND_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CURAND_WRAP);
......
......@@ -3,7 +3,7 @@ add_unittest_without_exec(socket_test
SocketTest.cpp)
add_test(NAME socket_test
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port
${CMAKE_CURRENT_BINARY_DIR}/socket_test --loop_time=10)
####################### test_ProtoServer ####################
......@@ -12,7 +12,7 @@ add_unittest_without_exec(test_ProtoServer
IF(NOT ON_TRAVIS)
add_test(NAME test_ProtoServer
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port
${CMAKE_CURRENT_BINARY_DIR}/test_ProtoServer)
ENDIF(NOT ON_TRAVIS)
......@@ -24,5 +24,5 @@ ENDIF(NOT ON_TRAVIS)
add_unittest_without_exec(test_ParameterServer2
test_ParameterServer2.cpp)
add_test(NAME test_ParameterServer2
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port -n 4
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port -n 4
${CMAKE_CURRENT_BINARY_DIR}/test_ParameterServer2)
......@@ -31,7 +31,7 @@ Configuring cmake in /paddle/build ...
-DWITH_DOC=OFF
-DWITH_GPU=${WITH_GPU:-OFF}
-DWITH_AVX=${WITH_AVX:-OFF}
-DWITH_GOLANG=${WITH_GOLANG:-OFF}
-DWITH_GOLANG=${WITH_GOLANG:-ON}
-DWITH_SWIG_PY=ON
-DWITH_C_API=${WITH_C_API:-OFF}
-DWITH_PYTHON=${WITH_PYTHON:-ON}
......@@ -51,7 +51,7 @@ cmake .. \
-DWITH_DOC=OFF \
-DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_GOLANG=${WITH_GOLANG:-OFF} \
-DWITH_GOLANG=${WITH_GOLANG:-ON} \
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \
-DWITH_C_API=${WITH_C_API:-OFF} \
-DWITH_PYTHON=${WITH_PYTHON:-ON} \
......@@ -74,11 +74,11 @@ cat <<EOF
Running unit tests ...
========================================
EOF
ctest --output-on-failure
# make install should also be test when unittest
make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version
ctest --output-on-failure
fi
......@@ -130,7 +130,7 @@ fi
# generate deb package for current build
# FIXME(typhoonzero): should we remove paddle/scripts/deb ?
if [[ ${WITH_DEB:-OFF} == "ON" ]]; then
if [[ ${WITH_DEB:-ON} == "ON" ]]; then
cat <<EOF
========================================
Generating .deb package ...
......
......@@ -66,28 +66,92 @@ void NewRemoteParameterUpdater::init(
// from parameter server
if (paddle_begin_init_params(parameterClient_)) {
LOG(INFO) << "paddle_begin_init_params start";
// NOTE: convert V1 OptimizatioinConfig proto to V2 OptimizerConfig.
// This makes golang pserver compatible with handy V1 demos.
// TODO(wuyi): Refine or remove these ugly converting lines
OptimizerConfig optimizerConfigV2;
if (trainerConfig_.learning_method() == "momentum") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
} else if (trainerConfig_.learning_method() == "adagrad") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adagrad);
optimizerConfigV2.mutable_adagrad()->set_epsilon(
trainerConfig_.ada_epsilon());
} else if (trainerConfig_.learning_method() == "adadelta") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adagrad);
optimizerConfigV2.mutable_adadelta()->set_epsilon(
trainerConfig_.ada_epsilon());
optimizerConfigV2.mutable_adadelta()->set_rho(trainerConfig_.ada_rou());
} else if (trainerConfig_.learning_method() == "adam") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adam);
optimizerConfigV2.mutable_adam()->set_beta_1(trainerConfig_.adam_beta1());
optimizerConfigV2.mutable_adam()->set_beta_2(trainerConfig_.adam_beta2());
optimizerConfigV2.mutable_adam()->set_epsilon(
trainerConfig_.adam_epsilon());
} else {
LOG(ERROR) << "got unsupported v1 optimizer config: "
<< trainerConfig_.learning_method();
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
}
if (trainerConfig_.learning_rate_schedule() == "constant") {
optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
optimizerConfigV2.mutable_const_lr()->set_learning_rate(
trainerConfig_.learning_rate());
} else if (trainerConfig_.learning_rate_schedule() == "linear") {
optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Linear);
optimizerConfigV2.mutable_linear_lr()->set_learning_rate(
trainerConfig_.learning_rate());
optimizerConfigV2.mutable_linear_lr()->set_lr_decay_a(
trainerConfig_.learning_rate_decay_a());
optimizerConfigV2.mutable_linear_lr()->set_lr_decay_b(
trainerConfig_.learning_rate_decay_b());
} else {
LOG(ERROR) << "got unsupported v1 learning_rate_schedule config: "
<< trainerConfig_.learning_rate_schedule() << ", set to const";
optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
}
// overwrite optimizerConfigV2 for per-parameter(layer) configs
for (int i = 0; i < parameterSize(); ++i) {
auto paramConfig = parameters_[i]->getConfig();
LOG(INFO) << "old param config: " << paramConfig.DebugString();
// FIXME(typhoonzero): convert old paramConfig to optimizerConfig
OptimizerConfig optimizeConfigV2;
auto sgdConfigV2 = optimizeConfigV2.mutable_sgd();
sgdConfigV2->set_momentum(paramConfig.momentum());
sgdConfigV2->set_decay(paramConfig.decay_rate());
optimizeConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
auto constlr = optimizeConfigV2.mutable_const_lr();
if (paramConfig.has_momentum() &&
trainerConfig_.learning_method() == "momentum") {
optimizerConfigV2.mutable_sgd()->set_momentum(paramConfig.momentum());
}
if (paramConfig.has_learning_rate()) {
constlr->set_learning_rate(paramConfig.learning_rate());
} else {
constlr->set_learning_rate(trainerConfig_.learning_rate());
switch (optimizerConfigV2.lr_policy()) {
case 0:
optimizerConfigV2.mutable_const_lr()->set_learning_rate(
paramConfig.learning_rate());
break;
case 1:
optimizerConfigV2.mutable_linear_lr()->set_learning_rate(
paramConfig.learning_rate());
break;
}
}
if (trainerConfig_.algorithm() == "sgd") {
optimizeConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
// FIXME: config all algorithms
} else {
optimizeConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
if (paramConfig.has_decay_rate()) {
switch (optimizerConfigV2.optimizer()) {
case 1: // SGD
optimizerConfigV2.mutable_sgd()->set_decay(
paramConfig.decay_rate());
break;
case 2: // Adadelta
optimizerConfigV2.mutable_adadelta()->set_decay(
paramConfig.decay_rate());
break;
case 3: // Adagrad
optimizerConfigV2.mutable_adagrad()->set_decay(
paramConfig.decay_rate());
break;
case 4: // Adam
optimizerConfigV2.mutable_adam()->set_decay(
paramConfig.decay_rate());
break;
}
}
std::string bytes = optimizeConfigV2.SerializeAsString();
// send param and config to pserver
std::string bytes = optimizerConfigV2.SerializeAsString();
const char *array = bytes.data();
int size = (int)bytes.size();
paddle_init_param(
......
......@@ -28,6 +28,8 @@ DECLARE_bool(with_cost);
DECLARE_bool(with_gpu);
DECLARE_bool(parallel_nn);
DECLARE_string(config_args);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
const char *kConfigParserModuleName = "paddle.trainer.config_parser";
const char *kConfigParserFuncName = "parse_config_and_serialize";
......@@ -44,6 +46,8 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
configArgs << "trainer_id=" << FLAGS_trainer_id << ",local=" << FLAGS_local
<< ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu
<< ",parallel_nn=" << FLAGS_parallel_nn
<< ",use_mkldnn=" << FLAGS_use_mkldnn
<< ",use_mkldnn_wgt=" << FLAGS_use_mkldnn_wgt
<< ",cudnn_version=" << hl_get_cudnn_lib_version();
if (!FLAGS_config_args.empty()) {
configArgs << "," << FLAGS_config_args;
......
......@@ -2,19 +2,19 @@
add_unittest_without_exec(test_Compare
test_Compare.cpp)
add_test(NAME test_Compare
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python
${CMAKE_CURRENT_BINARY_DIR}/test_Compare
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
################# test_Trainer ###########################
add_unittest_without_exec(test_Trainer
test_Trainer.cpp)
add_test(NAME test_Trainer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/paddle/trainer/tests/gen_proto_data.py &&
${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/gen_proto_data.py &&
${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_Trainer
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
############### test_TrainerOnePass ##########################
if(WITH_PYTHON)
......@@ -23,60 +23,60 @@ if(WITH_PYTHON)
add_unittest_without_exec(test_TrainerOnePass
test_TrainerOnePass.cpp)
add_test(NAME test_TrainerOnePass
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d
${PROJ_ROOT}/python/:${PROJ_ROOT}/paddle/trainer/tests
${PROJ_ROOT}/paddle/.set_port.sh -p port ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d
${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests
${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
endif()
################ test_CompareTwoNets ######################
add_unittest_without_exec(test_CompareTwoNets
test_CompareTwoNets.cpp)
add_test(NAME test_CompareTwoNets
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
############### test_CompareTwoOpts ###################
add_unittest_without_exec(test_CompareTwoOpts
test_CompareTwoOpts.cpp)
add_test(NAME test_CompareTwoOpts
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoOpts
--config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf
--num_passes=1 --need_high_accuracy=0
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
################# test_CompareSparse ##################
add_unittest_without_exec(test_CompareSparse
test_CompareSparse.cpp)
if(NOT ON_TRAVIS)
add_test(NAME test_CompareSparse
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
./.set_port.sh -p port -n 6
${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
endif()
################# test_recurrent_machine_generation ###############
add_unittest_without_exec(test_recurrent_machine_generation
test_recurrent_machine_generation.cpp)
add_test(NAME test_recurrent_machine_generation
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_recurrent_machine_generation
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
#################### test_PyDataProviderWrapper #########################
add_unittest_without_exec(test_PyDataProviderWrapper
test_PyDataProviderWrapper.cpp)
add_test(NAME test_PyDataProviderWrapper
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d
${PROJ_ROOT}/python/:${PROJ_ROOT}/paddle/trainer/tests
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d
${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests
${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProviderWrapper
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
#################### test_config_parser #########################
add_test(NAME test_config_parser
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/paddle/trainer/tests/config_parser_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/)
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/config_parser_test.py
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
......@@ -20,6 +20,14 @@ DEFINE_bool(use_gpu, false, "Only support CPU training");
DEFINE_bool(use_gpu, true, "Whether to use GPU for training");
#endif
#ifdef PADDLE_USE_MKLDNN
// TODO(TJ): change to true when MKLDNN layers support multi-inputs
DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
#else
DEFINE_bool(use_mkldnn, false, "Only support CPU training");
#endif
DEFINE_bool(use_mkldnn_wgt, false, "Init weight from CPU weight");
DEFINE_bool(parallel_nn,
false,
"Whether to use multi-threads to calculate one neural network."
......
......@@ -40,3 +40,5 @@ DECLARE_bool(show_layer_stat);
DECLARE_string(predict_file);
DECLARE_bool(prev_batch_state);
DECLARE_string(init_model_path);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
......@@ -13,6 +13,6 @@ add_executable(
link_paddle_exe(test_CustomStackTracePrint)
if(NOT APPLE)
add_test(NAME test_CustomStackTracePrint
COMMAND ${PROJ_ROOT}/paddle/utils/tests/test_CustomStackTracePrint.sh
COMMAND ${PADDLE_SOURCE_DIR}/paddle/utils/tests/test_CustomStackTracePrint.sh
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
......@@ -9,13 +9,13 @@ foreach(filename ${proto_filenames})
get_filename_component(ABS_FIL ${filename} ABSOLUTE)
get_filename_component(FIL_WE ${filename} NAME_WE)
set(CUR_PROTO_GEN_PY
${PROJ_ROOT}/paddle/python/paddle/proto/${FIL_WE}_pb2.py)
${PADDLE_SOURCE_DIR}/paddle/python/paddle/proto/${FIL_WE}_pb2.py)
set(PROTO_GEN_PY
${CUR_PROTO_GEN_PY}
${PROTO_GEN_PY})
add_custom_command(OUTPUT ${CUR_PROTO_GEN_PY}
COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
ARGS "--python_out=${PROJ_ROOT}/python/paddle/proto"
ARGS "--python_out=${PADDLE_SOURCE_DIR}/python/paddle/proto"
"-I" ${CMAKE_CURRENT_SOURCE_DIR} ${ABS_FIL}
DEPENDS ${ABS_FIL} protoc)
endforeach()
......
set(OUTPUT_DIR
"${CMAKE_CURRENT_BINARY_DIR}/build")
file(GLOB TRAINER_PY_FILES . ./paddle/trainer/*.py)
file(GLOB HELPERS_PY_FILES . ./paddle/trainer_config_helpers/*.py)
......@@ -18,7 +16,7 @@ SET(COPY_PADDLE_MASTER "")
if(WITH_GOLANG)
SET(COPY_PADDLE_MASTER "copy_paddle_master")
add_custom_command(TARGET ${COPY_PADDLE_MASTER}
COMMAND cp ${paddle_master_LIB_PATH} ${PROJ_ROOT}/python/paddle/v2/master/
COMMAND cp ${paddle_master_LIB_PATH} ${PADDLE_SOURCE_DIR}/python/paddle/v2/master/
)
add_dependencies(copy_paddle_master paddle_master)
endif(WITH_GOLANG)
......@@ -27,19 +25,21 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
${CMAKE_CURRENT_BINARY_DIR}/setup.py)
add_custom_command(OUTPUT ${PROJ_ROOT}/python/paddle/v2/framework/core.so
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${PROJ_ROOT}/python/paddle/v2/framework/core.so
add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so
DEPENDS paddle_pybind)
add_custom_target(copy_paddle_pybind ALL DEPENDS ${PROJ_ROOT}/python/paddle/v2/framework/core.so)
add_custom_target(copy_paddle_pybind ALL DEPENDS ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so)
add_custom_command(OUTPUT ${OUTPUT_DIR}/.timestamp
add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel
COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT_DIR}/.timestamp
COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND ${CMAKE_COMMAND} -E remove_directory ${PADDLE_PYTHON_BUILD_DIR}/lib-python
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib* ${PADDLE_PYTHON_BUILD_DIR}/lib-python
DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER})
add_custom_target(paddle_python ALL DEPENDS
${OUTPUT_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel)
${PADDLE_PYTHON_BUILD_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel)
set(PADDLE_PYTHON_PACKAGE_DIR ${CMAKE_CURRENT_BINARY_DIR}/dist/)
......
......@@ -1604,6 +1604,8 @@ class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
@config_layer('fc')
class FCLayer(LayerBase):
layer_type = 'fc'
def __init__(self,
name,
size,
......@@ -1611,14 +1613,27 @@ class FCLayer(LayerBase):
bias=True,
error_clipping_threshold=None,
**xargs):
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
use_mkldnn_wgt = bool(
int(g_command_config_args.get("use_mkldnn_wgt", 0)))
if use_mkldnn:
self.layer_type = 'mkldnn_fc'
config_assert(
len(inputs) == 1,
"MkldnnFCLayer support one and only one input!")
super(FCLayer, self).__init__(
name, self.layer_type, size, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
psize = self.config.size * input_layer.size
dims = [input_layer.size, self.config.size]
format = self.inputs[input_index].format
sparse = format == "csr" or format == "csc"
if use_mkldnn:
config_assert(not sparse,
"MkldnnFCLayer do not support sparse format yet")
if use_mkldnn_wgt:
dims = [self.config.size, input_layer.size]
if sparse:
psize = self.inputs[input_index].nnz
else:
......@@ -1631,6 +1646,11 @@ class FCLayer(LayerBase):
self.config.error_clipping_threshold = error_clipping_threshold
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
layer_type = 'mkldnn_fc'
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
def __init__(self,
......
#################### test_config_parser #########################
add_test(NAME layers_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/layers_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/python/paddle/trainer_config_helpers/tests/layers_test.py
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/python/paddle)
add_test(NAME test_reset_hook
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/test_reset_hook.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/python/paddle/trainer_config_helpers/tests/test_reset_hook.py
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/python/paddle)
add_paddle_exe(protobuf_equal ProtobufEqualMain.cpp)
add_test(NAME test_layerHelpers
COMMAND
${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh ${PYTHON_EXECUTABLE}
${PADDLE_SOURCE_DIR}/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh ${PYTHON_EXECUTABLE}
${CMAKE_CURRENT_BINARY_DIR}/protobuf_equal
)
py_test(test_net SRCS test_net.py)
py_test(test_fc_op SRCS test_fc_op.py)
py_test(test_scope SRCS test_scope.py)
py_test(test_tensor SRCS test_tensor.py)
......
......@@ -53,15 +53,18 @@ def get_numeric_gradient(op,
tensor.set(input_values[var_name], core.CPUPlace())
# Create all output variable in local_scope
for output in op.outputs():
if local_scope.find_var(output) is None:
local_scope.new_var(output).get_tensor()
opts = op.outputs()
for key in opts:
for output in opts[key]:
if local_scope.find_var(output) is None:
local_scope.new_var(output).get_tensor()
op.infer_shape(local_scope)
# allocate output memory
for output in op.outputs():
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace())
for key in opts:
for output in opts[key]:
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx = core.DeviceContext.create(core.CPUPlace())
......@@ -73,21 +76,35 @@ def get_numeric_gradient(op,
def product(dim):
return reduce(lambda a, b: a * b, dim, 1)
# get the input tensor that we want to get it's numeric gradient.
tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims())
# prepare a numpy array to store the gradient.
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
tensor_to_check.set_float_element(i, origin) # restore old value
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
......@@ -136,19 +153,24 @@ class GradientChecker(unittest.TestCase):
if no_grad_set is None:
no_grad_set = set()
tmp_outs = forward_op.temp_outputs()
no_tmp_out = filter(lambda name: name not in tmp_outs,
forward_op.outputs())
no_tmp_out = forward_op.no_intermediate_outputs()
if len(no_tmp_out) != 1:
raise ValueError("non temp out_names should be 1")
in_names = forward_op.inputs()
inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
for no_grad in no_grad_set:
if no_grad not in in_names:
raise ValueError("no_grad should be in in_names")
backward_op = core.Operator.backward(forward_op, no_grad_set)
bwd_outputs = backward_op.outputs()
bwd_out_names = [item for k in bwd_outputs for item in bwd_outputs[k]]
places = [core.CPUPlace()]
if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
places.append(core.GPUPlace(0))
......@@ -174,7 +196,7 @@ class GradientChecker(unittest.TestCase):
var.set(value, place)
# create output var
for out_name in forward_op.outputs():
for out_name in out_names:
scope.new_var(out_name).get_tensor()
# infer the shape of output var and compute/set value of output var
......@@ -184,7 +206,7 @@ class GradientChecker(unittest.TestCase):
# create output grad var
# set shape as the output var
# set value of this grad to ones
for name in forward_op.outputs():
for name in out_names:
out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
......@@ -192,7 +214,7 @@ class GradientChecker(unittest.TestCase):
grad_tensor.set(data, place)
# create input grad var
for name in backward_op.outputs():
for name in bwd_out_names:
scope.new_var(name).get_tensor()
# infer the shape of input gradient var and compute/set it's value
......
......@@ -21,17 +21,18 @@ class TestCrossEntropy(unittest.TestCase):
self.outputs = {'Y': numpy.array(Y).astype("float32")}
# class CrossEntropyGradOpTest(GradientChecker):
# def test_softmax_grad(self):
# op = create_op("onehot_cross_entropy")
# batch_size = 100
# class_num = 10
# inputs = {
# "X": numpy.random.uniform(
# 0.1, 1.0, [batch_size, class_num]).astype("float32"),
# "label": (class_num / 2) * numpy.ones(batch_size).astype("int32")
# }
# self.check_grad(op, inputs, set("X"), "Y")
class CrossEntropyGradOpTest(GradientChecker):
def test_softmax_grad(self):
op = create_op("onehot_cross_entropy")
batch_size = 100
class_num = 10
inputs = {
"X": numpy.random.uniform(
0.1, 1.0, [batch_size, class_num]).astype("float32"),
"label": (class_num / 2) * numpy.ones(batch_size).astype("int32")
}
self.check_grad(op, inputs, set("X"), "Y")
if __name__ == "__main__":
unittest.main()
import paddle.v2.framework.core as core
import unittest
import numpy
from paddle.v2.framework.op import Operator
class TestFc(unittest.TestCase):
def test_fc(self):
scope = core.Scope()
place = core.CPUPlace()
x = scope.new_var("X")
x_tensor = x.get_tensor()
x_tensor.set_dims([1000, 784])
x_tensor.alloc_float(place)
w = scope.new_var("W")
w_tensor = w.get_tensor()
w_tensor.set_dims([784, 100])
w_tensor.alloc_float(place)
w_tensor.set(numpy.random.random((784, 100)).astype("float32"), place)
# Set a real numpy array here.
# x_tensor.set(numpy.array([]))
op = Operator("fc", X="X", Y="Y", W="W")
for out in op.outputs():
if scope.find_var(out) is None:
scope.new_var(out).get_tensor()
tensor = scope.find_var("Y").get_tensor()
op.infer_shape(scope)
self.assertEqual([1000, 100], tensor.shape())
ctx = core.DeviceContext.create(place)
op.run(scope, ctx)
# After complete all ops, check Y is expect or not.
if __name__ == '__main__':
unittest.main()
......@@ -3,6 +3,15 @@ from paddle.v2.framework.op import Operator
import unittest
def fc(X, W, Y):
ret_v = core.Net.create()
ret_v.add_op(Operator("mul", X="X", Y="W", Out="pre_activation"))
ret_v.add_op(Operator("sigmoid", X="pre_activation", Y=Y))
ret_v.complete_add_op(True)
return ret_v
class TestNet(unittest.TestCase):
def test_net_all(self):
net = core.Net.create()
......@@ -10,18 +19,18 @@ class TestNet(unittest.TestCase):
net.add_op(op1)
net2 = core.Net.create()
net2.add_op(Operator("fc", X="X", W="w", Y="fc.out"))
net2.add_op(fc(X="X", W="w", Y="fc.out"))
net2.complete_add_op(True)
net.add_op(net2)
net.complete_add_op(True)
expected = '''
Op(plain_net), inputs:(@EMPTY@, X, Y, w), outputs:(@TEMP@fc@0, Out, fc.out).
Op(add_two), inputs:(X, Y), outputs:(Out).
Op(plain_net), inputs:(@EMPTY@, X, w), outputs:(@TEMP@fc@0, fc.out).
Op(fc), inputs:(X, w, @EMPTY@), outputs:(fc.out, @TEMP@fc@0).
Op(mul), inputs:(X, w), outputs:(@TEMP@fc@0).
Op(sigmoid), inputs:(@TEMP@fc@0), outputs:(fc.out).
Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}.
Op(add_two), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{Y[fc.out]}.
'''
self.assertEqual(expected, "\n" + str(net))
......
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_lib
import paddle.v2.framework.proto.attribute_pb2 as attr_type_lib
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import unittest
class TestFrameworkProto(unittest.TestCase):
def test_all(self):
op_proto = op_proto_lib.OpProto()
op_proto = framework_pb2.OpProto()
ipt0 = op_proto.inputs.add()
ipt0.name = "a"
ipt0.comment = "the input of cosine op"
......@@ -19,7 +18,7 @@ class TestFrameworkProto(unittest.TestCase):
attr = op_proto.attrs.add()
attr.name = "scale"
attr.comment = "scale of cosine op"
attr.type = attr_type_lib.FLOAT
attr.type = framework_pb2.FLOAT
op_proto.type = "cos"
self.assertTrue(op_proto.IsInitialized())
......
......@@ -24,11 +24,12 @@ class TestSoftmaxOp(unittest.TestCase):
}
# class SoftmaxGradOpTest(GradientChecker):
# def test_softmax(self):
# op = create_op("softmax")
# inputs = {"X": np.random.uniform(0.1, 1, [10, 10]).astype("float32")}
# self.check_grad(op, inputs, set("X"), "Y")
class SoftmaxGradOpTest(GradientChecker):
def test_softmax(self):
op = create_op("softmax")
inputs = {"X": np.random.uniform(0.1, 1, [10, 10]).astype("float32")}
self.check_grad(op, inputs, set("X"), "Y")
if __name__ == '__main__':
unittest.main()
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
import paddle.trainer_config_helpers.optimizers as v1_optimizers
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Optimizers(update equation) for SGD method.
TODO(zhihong) : create new optimizer with proto config, add new optimizer here
TODO(yuyang18): Complete comments.
"""
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
import paddle.trainer_config_helpers.optimizers as v1_optimizers
from paddle.proto.OptimizerConfig_pb2 import OptimizerConfig
__all__ = [
'Momentum', 'Adam', 'Adamax', 'AdaGrad', 'DecayedAdaGrad', 'AdaDelta',
'RMSProp', 'ModelAverage', 'L2Regularization'
......@@ -70,7 +83,8 @@ class Optimizer(object):
gradient_machine.prefetch(in_args)
parameter_updater.getParametersRemote()
:param pserver_spec: pserver location, eg: localhost:3000
:param pserver_spec: pserver location, eg: localhost:3000, if use etcd,
pserver_spec should be the etcd endpoints, eg: http://localhost:2379
:return: parameter_updater
"""
if is_local:
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
import paddle.trainer.config_parser as cp
......@@ -113,16 +127,7 @@ class Parameters(object):
"""
return iter(self.__param_conf__)
def __getitem__(self, key):
"""
Get parameter by parameter name. It uses Python dict syntax.
:note: It will always copy the parameter from C++ side.
:param key: Parameter name
:type key: basestring
:return: parameter value
:rtype: np.ndarray
"""
def __getter_inner(self, key, param_type):
import py_paddle.swig_paddle as api
shape = self.get_shape(key)
......@@ -138,7 +143,7 @@ class Parameters(object):
each_gradient_machine, key)
# for simplify implementation now, we always copy from C++
assert isinstance(param, api.Parameter)
val = param.getBuf(api.PARAMETER_VALUE)
val = param.getBuf(param_type)
assert isinstance(val, api.Vector)
val = val.copyToNumpyArray()
return val
......@@ -146,6 +151,19 @@ class Parameters(object):
raise RuntimeError("Unexpected branch")
def __getitem__(self, key):
"""
Get parameter by parameter name. It uses Python dict syntax.
:note: It will always copy the parameter from C++ side.
:param key: Parameter name
:type key: basestring
:return: parameter value
:rtype: np.ndarray
"""
import py_paddle.swig_paddle as api
return self.__getter_inner(key, api.PARAMETER_VALUE)
def get_shape(self, key):
"""
get shape of the parameter.
......@@ -202,6 +220,19 @@ class Parameters(object):
"""
return self.__getitem__(key=parameter_name)
def get_grad(self, key):
"""
Get grandient by parameter name.
:note: It will always copy the parameter from C++ side.
:param key: parameter name
:type key: basestring
:return: The grandient matrix.
:rtype: np.ndarray
"""
import py_paddle.swig_paddle as api
return self.__getter_inner(key, api.PARAMETER_GRADIENT)
def set(self, parameter_name, value):
"""
Set parameter by parameter name & matrix.
......@@ -250,7 +281,13 @@ class Parameters(object):
size = reduce(lambda a, b: a * b, param.shape)
f.write(struct.pack("IIQ", 0, 4, size))
param = param.astype(np.float32)
f.write(param.tostring())
s = param.tostring()
wrote_size = 0
buf = buffer(s, wrote_size, 65535)
while buf: # f.write crashes with big data blog.
f.write(buf)
wrote_size += 65535
buf = buffer(s, wrote_size, 65535)
def deserialize(self, name, f):
"""
......
......@@ -161,14 +161,14 @@ class SGD(object):
self.__parameter_updater__.update(each_param)
cost_sum = out_args.sum()
cost = cost_sum / len(data_batch)
self.__parameter_updater__.finishBatch(cost)
batch_evaluator.finish()
event_handler(
v2_event.EndIteration(
pass_id=pass_id,
batch_id=batch_id,
cost=cost,
evaluator=batch_evaluator))
self.__parameter_updater__.finishBatch(cost)
batch_evaluator.finish()
self.__parameter_updater__.finishPass()
pass_evaluator.finish()
......
......@@ -45,14 +45,14 @@ setup(name='paddlepaddle',
'': '${CMAKE_CURRENT_SOURCE_DIR}',
# The paddle.v2.framework.proto will be generated while compiling.
# So that package points to other directory.
'paddle.v2.framework.proto': '${PROJ_BINARY_ROOT}/paddle/framework',
'py_paddle': '${PROJ_ROOT}/paddle/py_paddle'
'paddle.v2.framework.proto': '${PADDLE_BINARY_DIR}/paddle/framework',
'py_paddle': '${PADDLE_SOURCE_DIR}/paddle/py_paddle'
},
scripts=['${PROJ_BINARY_ROOT}/paddle/scripts/paddle'],
scripts=['${PADDLE_BINARY_DIR}/paddle/scripts/paddle'],
distclass=BinaryDistribution,
data_files=[('/usr/local/opt/paddle/bin',
['${PROJ_BINARY_ROOT}/paddle/scripts/paddle_usage',
'${PROJ_BINARY_ROOT}/paddle/trainer/paddle_trainer',
'${PROJ_BINARY_ROOT}/paddle/trainer/paddle_merge_model',
'${PROJ_BINARY_ROOT}/paddle/pserver/paddle_pserver_main'])]
['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main'])]
)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册