Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
877decdc
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
877decdc
编写于
1月 11, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
merge Daoyuan's FuncArg, address one of the comments.
上级
47aaac00
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
226 addition
and
248 deletion
+226
-248
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+1
-0
paddle/function/CosSimOp.cpp
paddle/function/CosSimOp.cpp
+76
-85
paddle/function/CosSimOp.h
paddle/function/CosSimOp.h
+9
-9
paddle/function/CosSimOpGpu.cu
paddle/function/CosSimOpGpu.cu
+36
-35
paddle/function/CosSimOpTest.cpp
paddle/function/CosSimOpTest.cpp
+34
-27
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+4
-0
paddle/gserver/layers/CosSimLayer.cpp
paddle/gserver/layers/CosSimLayer.cpp
+16
-15
paddle/gserver/layers/CosSimVecMatLayer.cpp
paddle/gserver/layers/CosSimVecMatLayer.cpp
+50
-23
paddle/gserver/layers/CosSimVecMatLayer.h
paddle/gserver/layers/CosSimVecMatLayer.h
+0
-54
未找到文件。
paddle/function/CMakeLists.txt
浏览文件 @
877decdc
...
...
@@ -27,6 +27,7 @@ if(WITH_TESTING)
add_simple_unittest
(
ContextProjectionOpTest
)
add_simple_unittest
(
PadOpTest
)
add_simple_unittest
(
MulOpTest
)
add_simple_unittest
(
CosSimOpTest
)
endif
()
endif
()
...
...
paddle/function/CosSimOp.cpp
浏览文件 @
877decdc
...
...
@@ -27,21 +27,21 @@ namespace paddle {
*
*/
template
<
>
void
CosSimForward
<
DEVICE_TYPE_CPU
>
(
CpuMatrix
*
out_mat
,
const
CpuMatrix
*
in1_mat
,
const
CpuMatrix
*
in2_mat
,
void
CosSimForward
<
DEVICE_TYPE_CPU
>
(
CpuMatrix
&
out_mat
,
const
CpuMatrix
&
in1_mat
,
const
CpuMatrix
&
in2_mat
,
real
scale
)
{
CHECK
(
out_mat
&&
in1_mat
&&
in2_mat
);
size_t
num_samples
=
out_mat
->
getHeight
();
size_t
dim
=
in1_mat
->
getWidth
();
CHECK
(
out_mat
.
getData
()
&&
in1_mat
.
getData
()
&&
in2_mat
.
getData
()
);
size_t
num_samples
=
out_mat
.
getHeight
();
size_t
dim
=
in1_mat
.
getWidth
();
/// column vector [nSamples, 1]
real
*
out
=
out_mat
->
getData
();
const
real
*
x
=
in1_mat
->
getData
();
const
real
*
y
=
in2_mat
->
getData
();
real
*
out
=
out_mat
.
getData
();
const
real
*
x
=
in1_mat
.
getData
();
const
real
*
y
=
in2_mat
.
getData
();
/// in2 might only have one row or full rows
CHECK
(
in2_mat
->
getHeight
()
==
1LU
||
in2_mat
->
getHeight
()
==
num_samples
);
size_t
inc
=
(
in2_mat
->
getHeight
()
==
1LU
)
?
0
:
dim
;
CHECK
(
in2_mat
.
getHeight
()
==
1LU
||
in2_mat
.
getHeight
()
==
num_samples
);
size_t
inc
=
(
in2_mat
.
getHeight
()
==
1LU
)
?
0
:
dim
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
,
x
+=
dim
,
y
+=
inc
)
{
real
square_sum_x
=
0
;
real
square_sum_y
=
0
;
...
...
@@ -75,26 +75,26 @@ class CosSimForwardFunc : public FunctionBase {
scale_
=
config
.
get
<
real
>
(
"scale"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
inputs
.
size
(),
2
);
CHECK_EQ
(
outputs
.
size
(),
1
);
CHECK_EQ
(
inouts
.
size
(),
0
);
CHECK_EQ
(
inputs
[
0
].
dims_
[
0
],
outputs
[
0
].
dims_
[
0
]
);
CHECK_EQ
(
inputs
[
0
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]
);
CHECK_EQ
(
outputs
[
0
].
dims_
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK
(
outputs
[
0
].
getData
()
&&
inputs
[
0
].
getData
()
&&
inputs
[
1
].
getData
());
auto
out_mat
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
outputs
[
0
].
getData
(),
outputs
[
0
].
dims_
[
0
],
outputs
[
0
].
dims_
[
1
]);
const
auto
in1_mat
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
0
].
getData
(),
inputs
[
0
].
dims_
[
0
],
inputs
[
0
].
dims_
[
1
]);
const
auto
in2_mat
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
1
].
getData
(),
inputs
[
1
].
dims_
[
0
],
inputs
[
1
].
dims_
[
1
]);
CHECK_EQ
(
inputs
[
0
].
shape
()[
0
],
outputs
[
0
].
shape
()[
0
]);
CHECK_EQ
(
inputs
[
0
].
shape
()[
1
],
inputs
[
1
].
shape
()[
1
]);
CHECK_EQ
(
outputs
[
0
].
shape
()[
1
],
1UL
);
CosSimForward
<
Device
>
(
out_mat
.
get
(),
in1_mat
.
get
(),
in2_mat
.
get
(),
scale_
);
CHECK
(
outputs
[
0
].
data
()
&&
inputs
[
0
].
data
()
&&
inputs
[
1
].
data
());
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
auto
out_mat
=
outputs
[
0
].
matrix
<
Device
>
();
const
auto
in1_mat
=
inputs
[
0
].
matrix
<
Device
>
();
const
auto
in2_mat
=
inputs
[
1
].
matrix
<
Device
>
();
CosSimForward
<
Device
>
(
out_mat
,
in1_mat
,
in2_mat
,
scale_
);
}
private:
...
...
@@ -116,28 +116,29 @@ private:
* \param scale, default 1.0
*/
template
<
>
void
CosSimBackward
<
DEVICE_TYPE_CPU
>
(
const
CpuMatrix
*
out_grad
,
const
CpuMatrix
*
out_val
,
const
CpuMatrix
*
in1_val
,
const
CpuMatrix
*
in2_val
,
CpuMatrix
*
in1_grad
,
CpuMatrix
*
in2_grad
,
void
CosSimBackward
<
DEVICE_TYPE_CPU
>
(
const
CpuMatrix
&
out_grad
,
const
CpuMatrix
&
out_val
,
const
CpuMatrix
&
in1_val
,
const
CpuMatrix
&
in2_val
,
CpuMatrix
&
in1_grad
,
CpuMatrix
&
in2_grad
,
real
scale
)
{
CHECK
(
out_grad
&&
out_val
&&
in1_val
&&
in2_val
&&
in1_grad
&&
in2_grad
);
CHECK_EQ
(
out_val
->
useGpu_
,
false
)
<<
"Matrix type are GPU, CPU required"
;
const
real
*
grad
=
out_grad
->
getData
();
const
real
*
out
=
out_val
->
getData
();
const
real
*
prev_out_x
=
in1_val
->
getData
();
const
real
*
prev_out_y
=
in2_val
->
getData
();
real
*
prev_grad_x
=
in1_grad
->
getData
();
real
*
prev_grad_y
=
in2_grad
->
getData
();
size_t
num_samples
=
out_grad
->
getHeight
();
size_t
dim
=
in1_val
->
getWidth
();
CHECK_EQ
(
in2_val
->
getHeight
(),
in2_grad
->
getHeight
());
CHECK
(
in2_val
->
getHeight
()
==
1LU
||
in2_val
->
getHeight
()
==
num_samples
);
size_t
inc
=
(
in2_val
->
getHeight
()
==
1LU
)
?
0
:
dim
;
CHECK
(
out_grad
.
getData
()
&&
out_val
.
getData
()
&&
in1_val
.
getData
()
&&
in2_val
.
getData
()
&&
in1_grad
.
getData
()
&&
in2_grad
.
getData
());
CHECK_EQ
(
out_val
.
useGpu_
,
false
)
<<
"Matrix type are GPU, CPU required"
;
const
real
*
grad
=
out_grad
.
getData
();
const
real
*
out
=
out_val
.
getData
();
const
real
*
prev_out_x
=
in1_val
.
getData
();
const
real
*
prev_out_y
=
in2_val
.
getData
();
real
*
prev_grad_x
=
in1_grad
.
getData
();
real
*
prev_grad_y
=
in2_grad
.
getData
();
size_t
num_samples
=
out_grad
.
getHeight
();
size_t
dim
=
in1_val
.
getWidth
();
CHECK_EQ
(
in2_val
.
getHeight
(),
in2_grad
.
getHeight
());
CHECK
(
in2_val
.
getHeight
()
==
1LU
||
in2_val
.
getHeight
()
==
num_samples
);
size_t
inc
=
(
in2_val
.
getHeight
()
==
1LU
)
?
0
:
dim
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
,
prev_out_x
+=
dim
,
prev_out_y
+=
inc
,
...
...
@@ -178,8 +179,8 @@ void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix* out_grad,
/**
* Cosine Similarity backward Derivative
*
* \param
ino
uts[0] forward input grad 1, size: nSamples * dim.
* \param
ino
uts[1] forward input grad 2,
* \param
outp
uts[0] forward input grad 1, size: nSamples * dim.
* \param
outp
uts[1] forward input grad 2,
* size: n2 * dim (n2 == 1 or n2 == nSamples).
*
* \param inputs[0] backward loss output grad, size : nSamples * 1.
...
...
@@ -194,46 +195,36 @@ class CosSimBackwardFunc : public FunctionBase {
scale_
=
config
.
get
<
real
>
(
"scale"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
inputs
.
size
(),
4
);
CHECK_EQ
(
outputs
.
size
(),
0
);
CHECK_EQ
(
inouts
.
size
(),
2
);
CHECK_EQ
(
outputs
.
size
(),
2
);
/// dim of out_grad and out_val == 1, column vector
CHECK_EQ
(
inputs
[
0
].
dims_
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
1
].
dims_
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
0
].
shape
()
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
1
].
shape
()
[
1
],
1UL
);
/// nSamples of out_grad == out_val == in_val1 == in_grad1
CHECK_EQ
(
inputs
[
1
].
dims_
[
0
],
inputs
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
0
].
dims_
[
0
],
inputs
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inouts
[
0
].
dims_
[
0
],
inputs
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
1
].
shape
()[
0
],
inputs
[
0
].
shape
()
[
0
]);
CHECK_EQ
(
inputs
[
0
].
shape
()[
0
],
inputs
[
0
].
shape
()
[
0
]);
CHECK_EQ
(
outputs
[
0
].
shape
()[
0
],
inputs
[
0
].
shape
()
[
0
]);
/// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
CHECK_EQ
(
inputs
[
3
].
dims_
[
1
],
inputs
[
2
].
dims_
[
1
]);
CHECK_EQ
(
inouts
[
0
].
dims_
[
1
],
inputs
[
2
].
dims_
[
1
]);
CHECK_EQ
(
inouts
[
1
].
dims_
[
1
],
inputs
[
2
].
dims_
[
1
]);
CHECK
(
inputs
[
0
].
getData
()
&&
inputs
[
1
].
getData
()
&&
inputs
[
2
].
getData
()
&&
inputs
[
3
].
getData
()
&&
inouts
[
0
].
getData
()
&&
inouts
[
1
].
getData
());
const
auto
out_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
0
].
getData
(),
inputs
[
0
].
dims_
[
0
],
inputs
[
0
].
dims_
[
1
]);
const
auto
out_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
1
].
getData
(),
inputs
[
1
].
dims_
[
0
],
inputs
[
1
].
dims_
[
1
]);
const
auto
in1_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
2
].
getData
(),
inputs
[
2
].
dims_
[
0
],
inputs
[
2
].
dims_
[
1
]);
const
auto
in2_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
3
].
getData
(),
inputs
[
3
].
dims_
[
0
],
inputs
[
3
].
dims_
[
1
]);
auto
in1_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inouts
[
0
].
getData
(),
inouts
[
0
].
dims_
[
0
],
inouts
[
0
].
dims_
[
1
]);
auto
in2_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inouts
[
1
].
getData
(),
inouts
[
1
].
dims_
[
0
],
inouts
[
1
].
dims_
[
1
]);
CosSimBackward
<
Device
>
(
out_grad
.
get
(),
out_val
.
get
(),
in1_val
.
get
(),
in2_val
.
get
(),
in1_grad
.
get
(),
in2_grad
.
get
(),
scale_
);
CHECK_EQ
(
inputs
[
3
].
shape
()[
1
],
inputs
[
2
].
shape
()[
1
]);
CHECK_EQ
(
outputs
[
0
].
shape
()[
1
],
inputs
[
2
].
shape
()[
1
]);
CHECK_EQ
(
outputs
[
1
].
shape
()[
1
],
inputs
[
2
].
shape
()[
1
]);
CHECK
(
inputs
[
0
].
data
()
&&
inputs
[
1
].
data
()
&&
inputs
[
2
].
data
()
&&
inputs
[
3
].
data
()
&&
outputs
[
0
].
data
()
&&
outputs
[
1
].
data
());
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
CHECK_EQ
(
outputs
[
1
].
getArgType
(),
ADD_TO
);
const
auto
out_grad
=
inputs
[
0
].
matrix
<
Device
>
();
const
auto
out_val
=
inputs
[
1
].
matrix
<
Device
>
();
const
auto
in1_val
=
inputs
[
2
].
matrix
<
Device
>
();
const
auto
in2_val
=
inputs
[
3
].
matrix
<
Device
>
();
auto
in1_grad
=
outputs
[
0
].
matrix
<
Device
>
();
auto
in2_grad
=
outputs
[
1
].
matrix
<
Device
>
();
CosSimBackward
<
Device
>
(
out_grad
,
out_val
,
in1_val
,
in2_val
,
in1_grad
,
in2_grad
,
scale_
);
}
private:
...
...
paddle/function/CosSimOp.h
浏览文件 @
877decdc
...
...
@@ -32,9 +32,9 @@ namespace paddle {
*
*/
template
<
DeviceType
Device
>
void
CosSimForward
(
typename
MatrixT
<
Device
>::
type
*
output
,
const
typename
MatrixT
<
Device
>::
type
*
input1
,
const
typename
MatrixT
<
Device
>::
type
*
input2
,
void
CosSimForward
(
typename
Tensor
<
real
,
Device
>::
Matrix
&
output
,
const
typename
Tensor
<
real
,
Device
>::
Matrix
&
input1
,
const
typename
Tensor
<
real
,
Device
>::
Matrix
&
input2
,
real
scale
);
/**
...
...
@@ -50,12 +50,12 @@ void CosSimForward(typename MatrixT<Device>::type* output,
*
*/
template
<
DeviceType
Device
>
void
CosSimBackward
(
const
typename
MatrixT
<
Device
>::
type
*
out_grad
,
const
typename
MatrixT
<
Device
>::
type
*
out_value
,
const
typename
MatrixT
<
Device
>::
type
*
in1_value
,
const
typename
MatrixT
<
Device
>::
type
*
in2_value
,
typename
MatrixT
<
Device
>::
type
*
in1_grad
,
typename
MatrixT
<
Device
>::
type
*
in2_grad
,
void
CosSimBackward
(
const
typename
Tensor
<
real
,
Device
>::
Matrix
&
out_grad
,
const
typename
Tensor
<
real
,
Device
>::
Matrix
&
out_value
,
const
typename
Tensor
<
real
,
Device
>::
Matrix
&
in1_value
,
const
typename
Tensor
<
real
,
Device
>::
Matrix
&
in2_value
,
typename
Tensor
<
real
,
Device
>::
Matrix
&
in1_grad
,
typename
Tensor
<
real
,
Device
>::
Matrix
&
in2_grad
,
real
scale
);
}
// namespace paddle
paddle/function/CosSimOpGpu.cu
浏览文件 @
877decdc
...
...
@@ -65,12 +65,12 @@ __global__ void KeCosSim(real* output,
}
void
hlCossim
(
real
*
output
,
const
real
*
input1
,
const
real
*
input2
,
size_t
width
,
size_t
input1_height
,
size_t
input2_height
,
real
scale
)
{
const
real
*
input1
,
const
real
*
input2
,
size_t
width
,
size_t
input1_height
,
size_t
input2_height
,
real
scale
)
{
CHECK_NOTNULL
(
output
);
CHECK_NOTNULL
(
input1
);
CHECK_NOTNULL
(
input2
);
...
...
@@ -84,20 +84,20 @@ void hlCossim(real* output,
}
template
<
>
void
CosSimForward
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
*
out_mat
,
const
GpuMatrix
*
in1_mat
,
const
GpuMatrix
*
in2_mat
,
void
CosSimForward
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_mat
,
const
GpuMatrix
&
in1_mat
,
const
GpuMatrix
&
in2_mat
,
real
scale
)
{
CHECK
(
out_mat
&&
in1_mat
&&
in2_mat
);
CHECK
(
in1_mat
->
useGpu_
==
true
&&
in2_mat
->
useGpu_
==
true
)
CHECK
(
out_mat
.
getData
()
&&
in1_mat
.
getData
()
&&
in2_mat
.
getData
()
);
CHECK
(
in1_mat
.
useGpu_
==
true
&&
in2_mat
.
useGpu_
==
true
)
<<
"Matrix type are not GPU"
;
size_t
num_samples
=
out_mat
->
getHeight
();
size_t
dim
=
in1_mat
->
getWidth
();
real
*
out
=
out_mat
->
getData
();
const
real
*
x
=
in1_mat
->
getData
();
const
real
*
y
=
in2_mat
->
getData
();
hlCossim
(
out
,
x
,
y
,
dim
,
in1_mat
->
getHeight
(),
in2_mat
->
getHeight
(),
scale
);
size_t
num_samples
=
out_mat
.
getHeight
();
size_t
dim
=
in1_mat
.
getWidth
();
real
*
out
=
out_mat
.
getData
();
const
real
*
x
=
in1_mat
.
getData
();
const
real
*
y
=
in2_mat
.
getData
();
hlCossim
(
out
,
x
,
y
,
dim
,
in1_mat
.
getHeight
(),
in2_mat
.
getHeight
(),
scale
);
}
template
<
int
block_size
>
...
...
@@ -206,25 +206,26 @@ void hlCossimDerivative(const real* grad,
}
template
<
>
void
CosSimBackward
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
*
out_grad
,
const
GpuMatrix
*
out_val
,
const
GpuMatrix
*
in1_val
,
const
GpuMatrix
*
in2_val
,
GpuMatrix
*
in1_grad
,
GpuMatrix
*
in2_grad
,
void
CosSimBackward
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
&
out_grad
,
const
GpuMatrix
&
out_val
,
const
GpuMatrix
&
in1_val
,
const
GpuMatrix
&
in2_val
,
GpuMatrix
&
in1_grad
,
GpuMatrix
&
in2_grad
,
real
scale
)
{
CHECK
(
out_grad
&&
out_val
&&
in1_val
&&
in2_val
&&
in1_grad
&&
in2_grad
);
CHECK
(
out_grad
->
useGpu_
&&
out_val
->
useGpu_
&&
in1_val
->
useGpu_
&&
in2_val
->
useGpu_
&&
in1_grad
->
useGpu_
&&
in2_grad
->
useGpu_
)
CHECK
(
out_grad
.
getData
()
&&
out_val
.
getData
()
&&
in1_val
.
getData
()
&&
in2_val
.
getData
()
&&
in1_grad
.
getData
()
&&
in2_grad
.
getData
());
CHECK
(
out_grad
.
useGpu_
&&
out_val
.
useGpu_
&&
in1_val
.
useGpu_
&&
in2_val
.
useGpu_
&&
in1_grad
.
useGpu_
&&
in2_grad
.
useGpu_
)
<<
"Matrix types are not equally GPU"
;
size_t
dim
=
in1_val
->
getWidth
();
const
real
*
grad
=
out_grad
->
getData
();
const
real
*
out
=
out_val
->
getData
();
const
real
*
prev_out_x
=
in1_val
->
getData
();
const
real
*
prev_out_y
=
in2_val
->
getData
();
real
*
prev_grad_x
=
in1_grad
->
getData
();
real
*
prev_grad_y
=
in2_grad
->
getData
();
size_t
dim
=
in1_val
.
getWidth
();
const
real
*
grad
=
out_grad
.
getData
();
const
real
*
out
=
out_val
.
getData
();
const
real
*
prev_out_x
=
in1_val
.
getData
();
const
real
*
prev_out_y
=
in2_val
.
getData
();
real
*
prev_grad_x
=
in1_grad
.
getData
();
real
*
prev_grad_y
=
in2_grad
.
getData
();
hlCossimDerivative
(
grad
,
out
,
prev_out_x
,
...
...
@@ -232,8 +233,8 @@ void CosSimBackward<DEVICE_TYPE_GPU>(const GpuMatrix* out_grad,
prev_grad_x
,
prev_grad_y
,
dim
,
in1_val
->
getHeight
(),
in2_val
->
getHeight
(),
in1_val
.
getHeight
(),
in2_val
.
getHeight
(),
scale
);
}
...
...
paddle/function/CosSimOpTest.cpp
浏览文件 @
877decdc
...
...
@@ -36,16 +36,20 @@ void testCosSimForward(size_t height_x,
CpuMatrix
cpu_out
(
height_x
,
1
);
GpuMatrix
gpu_out
(
height_x
,
1
);
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
cpu_arg1
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_arg2
.
getData
(),
Dims
{
height_y
,
width
})},
{
Tensor
(
cpu_out
.
getData
(),
Dims
{
height_x
,
1
})},
{});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_arg1
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_arg2
.
getData
(),
Dims
{
height_y
,
width
})},
{
Tensor
(
gpu_out
.
getData
(),
Dims
{
height_x
,
1
})},
{});
BufferArgs
cpu_inputs
;
BufferArgs
cpu_outputs
;
cpu_inputs
.
addArg
(
cpu_arg1
);
cpu_inputs
.
addArg
(
cpu_arg2
);
cpu_outputs
.
addArg
(
cpu_out
,
ASSIGN_TO
);
BufferArgs
gpu_inputs
;
BufferArgs
gpu_outputs
;
gpu_inputs
.
addArg
(
gpu_arg1
);
gpu_inputs
.
addArg
(
gpu_arg2
);
gpu_outputs
.
addArg
(
gpu_out
,
ASSIGN_TO
);
compare
.
getCpuFunction
()
->
calc
(
cpu_inputs
,
cpu_outputs
);
compare
.
getGpuFunction
()
->
calc
(
gpu_inputs
,
gpu_outputs
);
autotest
::
TensorCheckErr
(
cpu_out
,
gpu_out
);
}
...
...
@@ -96,23 +100,26 @@ void testCosSimBackward(size_t height_x,
gpu_in1_grad
.
copyFrom
(
cpu_in1_grad
);
gpu_in2_grad
.
copyFrom
(
cpu_in2_grad
);
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
cpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
cpu_in1_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
})},
{},
{
Tensor
(
cpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
gpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
gpu_in1_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
})},
{},
{
Tensor
(
gpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})});
BufferArgs
cpu_inputs
;
BufferArgs
cpu_outputs
;
cpu_inputs
.
addArg
(
cpu_out_grad
);
cpu_inputs
.
addArg
(
cpu_out_val
);
cpu_inputs
.
addArg
(
cpu_in1_val
);
cpu_inputs
.
addArg
(
cpu_in2_val
);
cpu_outputs
.
addArg
(
cpu_in1_grad
,
ADD_TO
);
cpu_outputs
.
addArg
(
cpu_in2_grad
,
ADD_TO
);
BufferArgs
gpu_inputs
;
BufferArgs
gpu_outputs
;
gpu_inputs
.
addArg
(
gpu_out_grad
);
gpu_inputs
.
addArg
(
gpu_out_val
);
gpu_inputs
.
addArg
(
gpu_in1_val
);
gpu_inputs
.
addArg
(
gpu_in2_val
);
gpu_outputs
.
addArg
(
gpu_in1_grad
,
ADD_TO
);
gpu_outputs
.
addArg
(
gpu_in2_grad
,
ADD_TO
);
compare
.
getCpuFunction
()
->
calc
(
cpu_inputs
,
cpu_outputs
);
compare
.
getGpuFunction
()
->
calc
(
gpu_inputs
,
gpu_outputs
);
autotest
::
TensorCheckErr
(
cpu_in1_grad
,
gpu_in1_grad
);
autotest
::
TensorCheckErr
(
cpu_in2_grad
,
gpu_in2_grad
);
...
...
paddle/function/FunctionTest.h
浏览文件 @
877decdc
...
...
@@ -157,6 +157,9 @@ public:
cpuSparse_
->
randomizeUniform
();
gpuSparse_
->
copyFrom
(
*
cpuSparse_
,
stream
);
hl_stream_synchronize
(
stream
);
void
addInputs
(
const
SequenceArg
&
input
)
{
size_t
batchSize
=
input
.
shape
()[
0
];
size_t
numSeqs
=
batchSize
/
10
+
1
;
cpuOutputs_
.
emplace_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
*
cpuSparse_
,
argType
));
...
...
@@ -331,6 +334,7 @@ protected:
}
protected:
<<<<<<<
HEAD
std
::
shared_ptr
<
FunctionBase
>
cpuFunc_
;
std
::
shared_ptr
<
FunctionBase
>
gpuFunc_
;
std
::
vector
<
CpuMemHandlePtr
>
cpuMemory_
;
...
...
paddle/gserver/layers/CosSimLayer.cpp
浏览文件 @
877decdc
...
...
@@ -56,13 +56,12 @@ void CosSimLayer::forward(PassType passType) {
MatrixPtr
prevOut2
=
getInputValue
(
1
);
CHECK
(
outV
&&
prevOut1
&&
prevOut2
);
forward_
[
0
]
->
calc
(
{
Tensor
(
prevOut1
->
getData
(),
Dims
{
prevOut1
->
getHeight
(),
prevOut1
->
getWidth
()}),
Tensor
(
prevOut2
->
getData
(),
Dims
{
prevOut2
->
getHeight
(),
prevOut2
->
getWidth
()})},
{
Tensor
(
outV
->
getData
(),
Dims
{
outV
->
getHeight
(),
outV
->
getWidth
()})},
{});
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
prevOut1
);
inputs
.
addArg
(
*
prevOut2
);
outputs
.
addArg
(
*
outV
,
ASSIGN_TO
);
forward_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
@@ -78,14 +77,16 @@ void CosSimLayer::backward(const UpdateCallback& callback) {
auto
inG1
=
this
->
getInputGrad
(
0
);
auto
inG2
=
this
->
getInputGrad
(
1
);
CHECK
(
outG
&&
outV
&&
inV1
&&
inV2
&&
inG1
&&
inG2
);
backward_
[
0
]
->
calc
(
{
Tensor
(
outG
->
getData
(),
Dims
{
outG
->
getHeight
(),
outG
->
getWidth
()}),
Tensor
(
outV
->
getData
(),
Dims
{
outV
->
getHeight
(),
outV
->
getWidth
()}),
Tensor
(
inV1
->
getData
(),
Dims
{
inV1
->
getHeight
(),
inV1
->
getWidth
()}),
Tensor
(
inV2
->
getData
(),
Dims
{
inV2
->
getHeight
(),
inV2
->
getWidth
()})},
{},
{
Tensor
(
inG1
->
getData
(),
Dims
{
inG1
->
getHeight
(),
inG1
->
getWidth
()}),
Tensor
(
inG2
->
getData
(),
Dims
{
inG2
->
getHeight
(),
inG2
->
getWidth
()})});
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
outG
);
inputs
.
addArg
(
*
outV
);
inputs
.
addArg
(
*
inV1
);
inputs
.
addArg
(
*
inV2
);
outputs
.
addArg
(
*
inG1
,
ADD_TO
);
outputs
.
addArg
(
*
inG2
,
ADD_TO
);
backward_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
paddle/gserver/layers/CosSimVecMatLayer.cpp
浏览文件 @
877decdc
...
...
@@ -12,11 +12,44 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "CosSimVecMatLayer.h"
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
/**
* @brief A layer for computing cosine similarity between a vector
* and each row of a matrix
* out[i] = cos_scale * cos(in1, in2(i,:));
* @note used in NEURAL TURING MACHINE
*
* Input1: a vector (batchSize * dataDim)
*
* Input2: a matrix in vector form (batchSize * (weightDim*dataDim))
*
* Output: a vector (batchSize * weightDim)
*/
class
CosSimVecMatLayer
:
public
Layer
{
public:
explicit
CosSimVecMatLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
~
CosSimVecMatLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
void
forward
(
PassType
passType
);
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
);
protected:
MatrixPtr
tmpMtx0
;
MatrixPtr
tmpMtx1
;
MatrixPtr
tmpRow0
;
MatrixPtr
tmpRow1
;
MatrixPtr
tmpRow2
;
MatrixPtr
tmpRow3
;
};
/**
* @brief A layer for computing cosine similarity between a vector
...
...
@@ -98,7 +131,6 @@ bool CosSimVecMatLayer::init(const LayerMap& layerMap,
/* trans= */
false
,
useGpu_
);
/// todo(tianbing), do we really need to check these shared pointers?
CHECK
(
tmpRow0
&&
tmpRow1
&&
tmpRow2
&&
tmpRow3
&&
tmpMtx0
&&
tmpMtx1
);
createFunction
(
forward_
,
...
...
@@ -136,13 +168,12 @@ void CosSimVecMatLayer::forward(PassType passType) {
tmpMtx0
->
setData
(
inV1
->
rowBuf
(
i
));
tmpRow2
->
setData
(
outV
->
rowBuf
(
i
));
forward_
[
0
]
->
calc
({
Tensor
(
tmpMtx0
->
getData
(),
Dims
{
tmpMtx0
->
getHeight
(),
tmpMtx0
->
getWidth
()}),
Tensor
(
tmpRow0
->
getData
(),
Dims
{
tmpRow0
->
getHeight
(),
tmpRow0
->
getWidth
()})},
{
Tensor
(
tmpRow2
->
getData
(),
Dims
{
tmpRow2
->
getHeight
(),
tmpRow2
->
getWidth
()})},
{});
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
tmpMtx0
);
inputs
.
addArg
(
*
tmpRow0
);
outputs
.
addArg
(
*
tmpRow2
,
ASSIGN_TO
);
forward_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
@@ -168,20 +199,16 @@ void CosSimVecMatLayer::backward(const UpdateCallback& callback) {
tmpRow2
->
setData
(
outV
->
rowBuf
(
i
));
tmpRow3
->
setData
(
outG
->
rowBuf
(
i
));
backward_
[
0
]
->
calc
(
{
Tensor
(
tmpRow3
->
getData
(),
Dims
{
tmpRow3
->
getHeight
(),
tmpRow3
->
getWidth
()}),
Tensor
(
tmpRow2
->
getData
(),
Dims
{
tmpRow2
->
getHeight
(),
tmpRow2
->
getWidth
()}),
Tensor
(
tmpMtx0
->
getData
(),
Dims
{
tmpMtx0
->
getHeight
(),
tmpMtx0
->
getWidth
()}),
Tensor
(
tmpRow0
->
getData
(),
Dims
{
tmpRow0
->
getHeight
(),
tmpRow0
->
getWidth
()})},
{},
{
Tensor
(
tmpMtx1
->
getData
(),
Dims
{
tmpMtx1
->
getHeight
(),
tmpMtx1
->
getWidth
()}),
Tensor
(
tmpRow1
->
getData
(),
Dims
{
tmpRow1
->
getHeight
(),
tmpRow1
->
getWidth
()})});
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
tmpRow3
);
inputs
.
addArg
(
*
tmpRow2
);
inputs
.
addArg
(
*
tmpMtx0
);
inputs
.
addArg
(
*
tmpRow0
);
outputs
.
addArg
(
*
tmpMtx1
,
ADD_TO
);
outputs
.
addArg
(
*
tmpRow1
,
ADD_TO
);
backward_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
paddle/gserver/layers/CosSimVecMatLayer.h
已删除
100644 → 0
浏览文件 @
47aaac00
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief A layer for computing cosine similarity between a vector
* and each row of a matrix
* out[i] = cos_scale * cos(in1, in2(i,:));
* @note used in NEURAL TURING MACHINE
*
* Input1: a vector (batchSize * dataDim)
*
* Input2: a matrix in vector form (batchSize * (weightDim*dataDim))
*
* Output: a vector (batchSize * weightDim)
*/
class
CosSimVecMatLayer
:
public
Layer
{
public:
explicit
CosSimVecMatLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
~
CosSimVecMatLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
void
forward
(
PassType
passType
);
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
);
protected:
MatrixPtr
tmpMtx0
;
MatrixPtr
tmpMtx1
;
MatrixPtr
tmpRow0
;
MatrixPtr
tmpRow1
;
MatrixPtr
tmpRow2
;
MatrixPtr
tmpRow3
;
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录