未验证 提交 86ac0510 编写于 作者: C cnn 提交者: GitHub

[doc] 增加TX2文档和benchmark测试 (#1650)

* add TX2 cpp build document and benchmark

* turn WITH_MKL=ON

* add tensorrt version

* set WITH_GPU=OFF for CI

* keep same as TX2_build
上级 0239a6f1
# TX2平台编译指南
## 说明
本文档在`TX2`平台上使用`jetpack 4.3`进行测试。`TX2`平台的开发指南请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html).
## TX2环境搭建
`TX2`系统软件安装,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html).
* (1) 查看硬件系统的l4t的版本号
```
cat /etc/nv_tegra_release
```
* (2) 根据硬件,选择硬件可安装的`JetPack`版本,硬件和`JetPack`版本对应关系请参考[jetpack-archive](https://developer.nvidia.com/embedded/jetpack-archive).
* (3) 下载`JetPack`,请参考[NVIDIA Jetson Linux Developer Guide](https://docs.nvidia.com/jetson/l4t/index.html)中的`Preparing a Jetson Developer Kit for Use`章节内容进行刷写系统镜像。
## `Paddle`预测库
本文档使用`Paddle``TX2`平台上预先编译好的预测库,下载地址[fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.8.4-nv-jetson-cuda10-cudnn7.5-trt5/fluid_inference.tgz), `Paddle`版本`1.8.4`,`CUDA`版本`10.0`,`CUDNN`版本`7.5``TensorRT`版本`5`
若需要自己在`TX2`平台上编译`Paddle`,请参考文档[安装与编译 Linux 预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)`NVIDIA Jetson嵌入式硬件预测库源码编译`部分内容。
### Step1: 下载代码
`git clone https://github.com/PaddlePaddle/PaddleDetection.git`
**说明**:其中`C++`预测代码在`/root/projects/PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的硬件平台,针对不同`CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
**注意:** 预编译库`nv-jetson-cuda10-cudnn7.5-trt5`使用的`GCC`版本是`7.5.0`,其他都是使用`GCC 4.8.5`编译的。使用高版本的GCC可能存在`ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html)
### Step4: 编译
编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:
注意,`TX2`平台的`CUDA``CUDNN`需要通过`JetPack`安装。
```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON
# 是否使用MKL or openblas,TX2需要设置为OFF
WITH_MKL=OFF
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=ON
# TensorRT 的lib路径
TENSORRT_DIR=/path/to/TensorRT/
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/
# OPENCV_DIR 的路径
# linux平台请下载:https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2,并解压到deps文件夹下
# TX2平台请下载:https://paddlemodels.bj.bcebos.com/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip,并解压到deps文件夹下
OPENCV_DIR=/path/to/opencv
# 请检查以上各个路径是否正确
# 以下无需改动
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DWITH_MKL=OFF \
-DWITH_TENSORRT=${WITH_TENSORRT} \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DPADDLE_DIR=${PADDLE_DIR} \
-DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR}
make
```
例如设置如下:
```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON
# 是否使用MKL or openblas
WITH_MKL=OFF
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF
# TensorRT 的路径
TENSORRT_DIR=/home/nvidia/PaddleDetection_infer/tensorrt/
# Paddle 预测库路径
PADDLE_DIR=/home/nvidia/PaddleDetection_infer/fluid_inference_1.8.4-_cuda10_cudnnv7.5_trt5_jetson_sm53_62_72/
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径
CUDA_LIB=/usr/local/cuda-10.0/lib64
# CUDNN 的 lib 路径
CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
```
修改脚本设置好主要参数后,执行`build`脚本:
```shell
sh ./scripts/build.sh
```
### Step5: 预测及可视化
编译成功后,预测入口程序为`build/main`其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| --model_dir | 导出的预测模型所在路径 |
| --image_path | 要预测的图片文件路径 |
| --video_path | 要预测的视频文件路径 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
**注意**: 如果同时设置了`video_path``image_path`,程序仅预测`video_path`
`样例一`
```shell
#不使用`GPU`测试图片 `/root/projects/images/test.jpeg`
./main --model_dir=/root/projects/models/yolov3_darknet --image_path=/root/projects/images/test.jpeg
```
图片文件`可视化预测结果`会保存在当前目录下`output.jpg`文件中。
`样例二`:
```shell
#使用 `GPU`预测视频`/root/projects/videos/test.mp4`
./main --model_dir=/root/projects/models/yolov3_darknet --video_path=/root/projects/images/test.mp4 --use_gpu=1
```
视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
## 性能测试
测试环境为:硬件: TX2,JetPack版本: 4.3, Paddle预测库: 1.8.4,CUDA: 10.0, CUDNN: 7.5, TensorRT: 5.0.
去掉前100轮warmup时间,测试100轮的平均时间,单位ms/image,只计算模型运行时间,不包括数据的处理和拷贝。
|模型 | 输入| AnalysisPredictor(ms) |
|---|----|---|
| yolov3_mobilenet_v1 | 608*608 | 56.243858
| faster_rcnn_r50_1x | 1333*1333 | 73.552460
| faster_rcnn_r50_vd_fpn_2x | 1344*1344 | 87.582146
| mask_rcnn_r50_fpn_1x | 1344*1344 | 107.317848
| mask_rcnn_r50_vd_fpn_2x | 1344*1344 | 87.98.708122
| ppyolo_r18vd | 320*320 | 22.876789
| ppyolo_2x | 608*608 | 68.562050
......@@ -40,33 +40,39 @@ fluid_inference
编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:
```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=OFF
# 使用MKL or openblas
WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF
# TensorRT 的lib路径
TENSORRT_DIR=/path/to/TensorRT/
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/
# OPENCV 路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
修改脚本设置好主要参数后,执行`build`脚本:
```shell
sh ./scripts/build.sh
```
# 请检查以上各个路径是否正确
# 以下无需改动
rm -rf build
mkdir -p build
cd build
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DWITH_MKL=${WITH_MKL} \
......
# download pre-compiled opencv lib
OPENCV_URL=https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2
if [ ! -d "./deps/opencv3.4.6gcc4.8ffmpeg/" ]; then
mkdir -p deps
cd deps
wget -c ${OPENCV_URL}
tar xvfj opencv3.4.6gcc4.8ffmpeg.tar.gz2
cd ..
fi
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=OFF
# 使用MKL or openblas
# 是否使用MKL or openblas
WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF
# TensorRT 的路径
TENSORRT_DIR=/path/to/TensorRT/
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/
# OPENCV 路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv
OPENCV_DIR=$(pwd)/deps/opencv3.4.6gcc4.8ffmpeg/
if [ "$(uname -m)"=="x86_64" ]; then
# linux系统通过以下命令下载预编译的opencv
mkdir -p $(pwd)/deps && cd $(pwd)/deps
wget -c https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2
tar xvfj opencv3.4.6gcc4.8ffmpeg.tar.gz2 && cd ..
# set OPENCV_DIR
OPENCV_DIR=$(pwd)/deps/opencv3.4.6gcc4.8ffmpeg/
elif [ "$(uname -m)"=="aarch64" ];then
# TX2平台通过以下命令下载预编译的opencv
mkdir -p $(pwd)/deps && cd $(pwd)/deps
wget -c https://paddlemodels.bj.bcebos.com/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip
unzip TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip && cd ..
# set OPENCV_DIR
OPENCV_DIR=$(pwd)/deps/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0/
fi
# 请检查以上各个路径是否正确
# 以下无需改动
rm -rf build
......@@ -34,4 +60,6 @@ cmake .. \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR}
make
echo "make finished!"
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册