提交 81c31368 编写于 作者: Y Yi Wang 提交者: GitHub

Merge pull request #3309 from qingqing01/bn_infer

add a batch norm inference kernel.
......@@ -39,6 +39,7 @@ set(CUDA_CU_SOURCES
src/hl_cuda_lstm.cu
src/hl_top_k.cu
src/hl_batch_transpose.cu
src/hl_batch_norm.cu
src/hl_cuda_sequence.cu
src/hl_table_apply.cu)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef HL_BATCH_NORM_H_
#define HL_BATCH_NORM_H_
#include "hl_base.h"
/**
* @brief batch norm inferece.
*
* @param[in] input input data.
* @param[out] output output data.
* @param[in] scale batch normalization scale parameter (in original
* paper scale is referred to as gamma).
* @param[in] bias batch normalization bias parameter (in original
* paper scale is referred to as beta).
* @param[in] estimatedMean
* @param[in] estimatedVar The moving mean and variance
* accumulated during the training phase are passed
* as inputs here.
* @param[in] epsilon Epsilon value used in the batch
* normalization formula.
*/
extern void hl_batch_norm_cuda_inference(const real* input,
real* output,
const real* scale,
const real* bias,
const real* estimatedMean,
const real* estimatedVar,
const double epsilon,
size_t batchSize,
size_t channel,
size_t height,
size_t width);
#endif // HL_BATCH_NORM_H_
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_batch_norm.h"
__global__ void batchNormInference(real* output,
const real* input,
const real* scale,
const real* bias,
const real* estimatedMean,
const real* estimatedVar,
const double epsilon,
size_t batchSize,
size_t channel,
size_t height,
size_t width) {
const int tid = threadIdx.x;
const int num = channel * height * width;
const int batch = blockIdx.x;
for (int i = tid; i < num; i += blockDim.x) {
const int c = i / (height * width);
const int id = batch * num + i;
real val = input[id] - estimatedMean[c];
val /= sqrt(estimatedVar[c] + epsilon);
val *= scale[c];
val += bias[c];
output[id] = val;
}
}
void hl_batch_norm_cuda_inference(const real* input,
real* output,
const real* scale,
const real* bias,
const real* estimatedMean,
const real* estimatedVar,
const double epsilon,
size_t batchSize,
size_t channel,
size_t height,
size_t width) {
batchNormInference<<<batchSize, 256, 0, STREAM_DEFAULT>>>(output,
input,
scale,
bias,
estimatedMean,
estimatedVar,
epsilon,
batchSize,
channel,
height,
width);
CHECK_SYNC("hl_batch_norm_cuda_inference failed!");
}
......@@ -1023,14 +1023,6 @@ void hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc,
real beta = 1.0f;
cudnnBatchNormMode_t mode = CUDNN_BATCHNORM_SPATIAL;
int batch_size = ((cudnn_tensor_descriptor)inputDesc)->batch_size;
if (batch_size > 1024 && g_cudnn_lib_version < 6000) {
LOG(INFO) << " To process current batch data with size " << batch_size
<< " (>1024), cudnnBatchNorm requires cuDNN version >= 6000."
<< " If there is an error complaining CUDNN_STATUS_NOT_SUPPORTED,"
<< " just recompile PaddlePaddle with cuDNN >= 6000, replacing"
<< " current version " << g_cudnn_lib_version;
}
CHECK_CUDNN(
dynload::cudnnBatchNormalizationForwardInference(t_resource.cudnn_handle,
mode,
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "CudnnBatchNormLayer.h"
#include "Layer.h"
#include "paddle/cuda/include/hl_batch_norm.h"
#include "paddle/utils/Stat.h"
namespace paddle {
......@@ -79,16 +80,33 @@ void CudnnBatchNormLayer::forward(PassType passType) {
savedInvVar);
} else {
// used movingMean and movingVar in testing
hl_batch_norm_forward_inference(ioDesc_,
input,
ioDesc_,
output,
bnParamDesc_,
gamma,
beta,
movingMean,
movingVar,
EPS);
if (batchSize <= 1024) {
hl_batch_norm_forward_inference(ioDesc_,
input,
ioDesc_,
output,
bnParamDesc_,
gamma,
beta,
movingMean,
movingVar,
EPS);
} else {
// There is a limitation in cudnn library.
// When the batch size is larger than 1024 in cuDNN v5.1,
// the cudnnBatchNormalizationForwardInference will fail.
hl_batch_norm_cuda_inference(input,
output,
gamma,
beta,
movingMean,
movingVar,
EPS,
batchSize,
channels_,
imageH_,
imageW_);
}
}
/* activation */ {
......
......@@ -21,6 +21,8 @@ limitations under the License. */
#include "paddle/utils/GlobalConstants.h"
#include "LayerGradUtil.h"
#include "paddle/cuda/include/hl_batch_norm.h"
#include "paddle/math/tests/TensorCheck.h"
#include "paddle/testing/TestUtil.h"
using namespace paddle; // NOLINT
......@@ -117,6 +119,74 @@ TEST(Layer, batchNorm) {
CHECK_EQ(static_cast<int>(convLayer->getOutputValue()->getWidth()), 576);
}
#ifndef PADDLE_ONLY_CPU
void batchNormInference(int n, int c, int h, int w) {
MatrixPtr input = std::make_shared<GpuMatrix>(n, c * h * w);
MatrixPtr cudnnOut = std::make_shared<GpuMatrix>(n, c * h * w);
MatrixPtr cudaOut = std::make_shared<GpuMatrix>(n, c * h * w);
MatrixPtr cudnnCheck = std::make_shared<CpuMatrix>(n, c * h * w);
MatrixPtr cudaCheck = std::make_shared<CpuMatrix>(n, c * h * w);
input->randomizeUniform();
cudnnOut->zeroMem();
cudaOut->zeroMem();
MatrixPtr scale = std::make_shared<GpuMatrix>(1, c);
scale->randomizeUniform();
MatrixPtr bias = std::make_shared<GpuMatrix>(1, c);
bias->randomizeUniform();
MatrixPtr movingMean = std::make_shared<GpuMatrix>(1, c);
movingMean->randomizeUniform();
MatrixPtr movingVar = std::make_shared<GpuMatrix>(1, c);
movingVar->randomizeUniform();
movingVar->clip(0.01, 50);
hl_tensor_descriptor ioDesc;
hl_tensor_descriptor bnDesc;
hl_create_tensor_descriptor(&ioDesc);
hl_create_tensor_descriptor(&bnDesc);
hl_tensor_reshape(ioDesc, n, c, h, w);
hl_tensor_reshape(bnDesc, 1, c, 1, 1);
double EPS = 1E-5;
hl_batch_norm_forward_inference(ioDesc,
input->getData(),
ioDesc,
cudnnOut->getData(),
bnDesc,
scale->getData(),
bias->getData(),
movingMean->getData(),
movingVar->getData(),
EPS);
hl_batch_norm_cuda_inference(input->getData(),
cudaOut->getData(),
scale->getData(),
bias->getData(),
movingMean->getData(),
movingVar->getData(),
EPS,
n,
c,
h,
w);
cudnnCheck->copyFrom(*cudnnOut);
cudaCheck->copyFrom(*cudaOut);
autotest::TensorCheckErr(*cudnnCheck, *cudaCheck);
hl_destroy_tensor_descriptor(ioDesc);
hl_destroy_tensor_descriptor(bnDesc);
}
TEST(BatchNorm, Inference) {
batchNormInference(33, 267, 1, 1);
batchNormInference(19, 105, 4, 4);
}
#endif
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册