未验证 提交 817ff45a 编写于 作者: W wangxinxin08 提交者: GitHub

[Dygraph]fix problem due to empty bbox_pred and modify ppyolo docs, test=dygraph (#2181)

* fix problem due to empty bbox_pred and modify ppyolo docs, test=dygraph

* modify post process to avoid dy2st problem
上级 a187703f
......@@ -46,7 +46,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.3 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.2 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 416 | 28.6 | 28.9 | 409.8 | 719.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 320 | 26.2 | 26.4 | 480.7 | 763.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
......@@ -129,7 +129,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_
CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=../demo
```
### 4. Inferece deployment and benchmark
### 4. Inferece deployment
For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands:
......@@ -141,18 +141,6 @@ python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o w
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True
```
Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands:
```bash
# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default
python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --exclude_nms
# FP32 benchmark
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True
# TensorRT FP16 benchmark
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
```
## Future work
......
......@@ -46,7 +46,7 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度:
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.3 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.2 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 416 | 28.6 | 28.9 | 409.8 | 719.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 320 | 26.2 | 26.4 | 480.7 | 763.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) |
......@@ -128,7 +128,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_
CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=../demo
```
### 4. 推理部署与benchmark
### 4. 推理部署
PP-YOLO模型部署及推理benchmark需要通过`tools/export_model.py`导出模型后使用Paddle预测库进行部署和推理,可通过如下命令一键式启动。
......@@ -140,18 +140,6 @@ python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o w
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True
```
PP-YOLO模型benchmark测试为不包含数据预处理和网络输出后处理(NMS)的网络结构部分数据,导出模型时须指定`--exlcude_nms`来裁剪掉模型中后处理的NMS部分,通过如下命令进行模型导出和benchmark测试。
```bash
# 导出模型,通过--exclude_nms参数裁剪掉模型中的NMS部分,默认存储于output/ppyolo目录
python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --exclude_nms
# FP32 benchmark测试
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True
# TensorRT FP16 benchmark测试
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
```
## 未来工作
......
......@@ -36,6 +36,10 @@ class BBoxPostProcess(object):
else:
bbox_pred, bbox_num = self.decode(head_out, rois, im_shape,
scale_factor)
if bbox_pred.shape[0] == 0:
bbox_pred = paddle.to_tensor(
np.array(
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32'))
return bbox_pred, bbox_num
def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
......@@ -51,7 +55,7 @@ class BBoxPostProcess(object):
bboxes are corresponding to the original image.
"""
if bboxes.shape[0] == 0:
return paddle.to_tensor([[0, 0.0, 0.0, 0.0, 0.0, 0.0]])
return paddle.zeros(shape=[1, 6])
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册