Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
80868f79
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80868f79
编写于
5月 22, 2018
作者:
S
Siddharth Goyal
提交者:
daminglu
5月 22, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dynamic rnn model for sentiment analysis with new API (#10849)
上级
faedee0d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
164 addition
and
0 deletion
+164
-0
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
...rstand_sentiment/test_understand_sentiment_dynamic_rnn.py
+164
-0
未找到文件。
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
0 → 100644
浏览文件 @
80868f79
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
functools
import
partial
import
numpy
as
np
CLASS_DIM
=
2
EMB_DIM
=
128
BATCH_SIZE
=
128
LSTM_SIZE
=
128
def
dynamic_rnn_lstm
(
data
,
input_dim
,
class_dim
,
emb_dim
,
lstm_size
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
input_dim
,
emb_dim
],
is_sparse
=
True
)
sentence
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
lstm_size
,
act
=
'tanh'
)
rnn
=
fluid
.
layers
.
DynamicRNN
()
with
rnn
.
block
():
word
=
rnn
.
step_input
(
sentence
)
prev_hidden
=
rnn
.
memory
(
value
=
0.0
,
shape
=
[
lstm_size
])
prev_cell
=
rnn
.
memory
(
value
=
0.0
,
shape
=
[
lstm_size
])
def
gate_common
(
ipt
,
hidden
,
size
):
gate0
=
fluid
.
layers
.
fc
(
input
=
ipt
,
size
=
size
,
bias_attr
=
True
)
gate1
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
size
,
bias_attr
=
False
)
return
gate0
+
gate1
forget_gate
=
fluid
.
layers
.
sigmoid
(
x
=
gate_common
(
word
,
prev_hidden
,
lstm_size
))
input_gate
=
fluid
.
layers
.
sigmoid
(
x
=
gate_common
(
word
,
prev_hidden
,
lstm_size
))
output_gate
=
fluid
.
layers
.
sigmoid
(
x
=
gate_common
(
word
,
prev_hidden
,
lstm_size
))
cell_gate
=
fluid
.
layers
.
sigmoid
(
x
=
gate_common
(
word
,
prev_hidden
,
lstm_size
))
cell
=
forget_gate
*
prev_cell
+
input_gate
*
cell_gate
hidden
=
output_gate
*
fluid
.
layers
.
tanh
(
x
=
cell
)
rnn
.
update_memory
(
prev_cell
,
cell
)
rnn
.
update_memory
(
prev_hidden
,
hidden
)
rnn
.
output
(
hidden
)
last
=
fluid
.
layers
.
sequence_last_step
(
rnn
())
prediction
=
fluid
.
layers
.
fc
(
input
=
last
,
size
=
class_dim
,
act
=
"softmax"
)
return
prediction
def
inference_program
(
word_dict
):
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
dict_dim
=
len
(
word_dict
)
pred
=
dynamic_rnn_lstm
(
data
,
dict_dim
,
CLASS_DIM
,
EMB_DIM
,
LSTM_SIZE
)
return
pred
def
train_program
(
word_dict
):
prediction
=
inference_program
(
word_dict
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
[
avg_cost
,
accuracy
]
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.002
)
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
trainer
=
fluid
.
Trainer
(
train_func
=
partial
(
train_program
,
word_dict
),
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
batch_size
=
BATCH_SIZE
)
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'words'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
save_dirname
)
trainer
.
stop
()
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
25000
),
batch_size
=
BATCH_SIZE
)
trainer
.
train
(
num_epochs
=
1
,
event_handler
=
event_handler
,
reader
=
train_reader
,
feed_order
=
[
'words'
,
'label'
])
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
inferencer
=
fluid
.
Inferencer
(
infer_func
=
partial
(
inference_program
,
word_dict
),
param_path
=
save_dirname
,
place
=
place
)
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
lod
=
[
0
,
4
,
10
]
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"understand_sentiment_conv.inference.model"
train
(
use_cuda
,
train_program
,
save_path
)
infer
(
use_cuda
,
inference_program
,
save_path
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录