Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
7e88026e
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7e88026e
编写于
5月 17, 2018
作者:
T
Tao Luo
提交者:
GitHub
5月 17, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10725 from Haichao-Zhang/improve_seq_pool_doc
improved the documentation for sequence_pool function
上级
c4a08043
3e34c979
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
13 addition
and
9 deletion
+13
-9
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+13
-9
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
7e88026e
...
@@ -1329,6 +1329,8 @@ def sequence_pool(input, pool_type):
...
@@ -1329,6 +1329,8 @@ def sequence_pool(input, pool_type):
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
last : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
first : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
Args:
input(variable): The input variable which is a LoDTensor.
input(variable): The input variable which is a LoDTensor.
...
@@ -1348,6 +1350,8 @@ def sequence_pool(input, pool_type):
...
@@ -1348,6 +1350,8 @@ def sequence_pool(input, pool_type):
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
"""
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
())
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
...
@@ -3769,13 +3773,13 @@ def label_smooth(label,
...
@@ -3769,13 +3773,13 @@ def label_smooth(label,
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
"""
"""
Region of interest pooling (also known as RoI pooling) is to perform
Region of interest pooling (also known as RoI pooling) is to perform
is to perform max pooling on inputs of nonuniform sizes to obtain
is to perform max pooling on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7).
fixed-size feature maps (e.g. 7*7).
The operator has three steps:
The operator has three steps:
1. Dividing each region proposal into equal-sized sections with
1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height
the pooled_width and pooled_height
2. Finding the largest value in each section
2. Finding the largest value in each section
3. Copying these max values to the output buffer
3. Copying these max values to the output buffer
Args:
Args:
...
@@ -3783,8 +3787,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
...
@@ -3783,8 +3787,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
rois (Variable): ROIs (Regions of Interest) to pool over. It should
rois (Variable): ROIs (Regions of Interest) to pool over. It should
be a 2-D one level LoTensor of shape [num_rois, 4].
be a 2-D one level LoTensor of shape [num_rois, 4].
The layout is [x1, y1, x2, y2], where (x1, y1)
The layout is [x1, y1, x2, y2], where (x1, y1)
is the top left coordinates, and (x2, y2) is the
is the top left coordinates, and (x2, y2) is the
bottom right coordinates. The num_rois is the
bottom right coordinates. The num_rois is the
total number of ROIs in this batch data.
total number of ROIs in this batch data.
pooled_height (integer): The pooled output height. Default: 1
pooled_height (integer): The pooled output height. Default: 1
pooled_width (integer): The pooled output width. Default: 1
pooled_width (integer): The pooled output width. Default: 1
...
@@ -3793,11 +3797,11 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
...
@@ -3793,11 +3797,11 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
to the scale used when pooling. Default: 1.0
to the scale used when pooling. Default: 1.0
Returns:
Returns:
pool_out (Variable): The output is a 4-D tensor of the shape
pool_out (Variable): The output is a 4-D tensor of the shape
(num_rois, channels, pooled_h, pooled_w).
(num_rois, channels, pooled_h, pooled_w).
Examples:
Examples:
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录