Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
7c55e08c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7c55e08c
编写于
8月 06, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
stash
上级
b656d97e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
54 addition
and
37 deletion
+54
-37
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+54
-37
未找到文件。
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
7c55e08c
...
@@ -28,23 +28,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
...
@@ -28,23 +28,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X)'s rank should be 2."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
"Input(Label)'s rank should be 2."
);
"Input(X) and Input(Label) shall have the same rank."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
"The 1st dimension of Input(X) and Input(Label) should "
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"be equal."
);
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the
2nd
dimension of "
"If Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
"Input(X) and Input(Label) should be equal."
);
}
else
{
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1UL
,
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1UL
,
"If Attr(softLabel) == false, the
2nd
dimension of "
"If Attr(softLabel) == false, the
last
dimension of "
"Input(Label) should be 1."
);
"Input(Label) should be 1."
);
}
}
ctx
->
SetOutputDim
(
"Y"
,
{
x_dims
[
0
],
1
});
auto
out_dim_vec
=
framework
::
vectorize
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
));
out_dim_vec
.
push_back
(
1
);
ctx
->
SetOutputDim
(
"Y"
,
framework
::
make_ddim
(
out_dim_vec
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
}
...
@@ -74,24 +79,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
...
@@ -74,24 +79,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
2
,
"Input(Y@Grad)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
rank
,
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2
,
"Input(Label)'s rank should be 2."
);
"Input(Y@Grad) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
rank
,
"The 1st dimension of Input(X) and Input(Label) should "
"Input(Label) and Input(X) should have the same rank."
);
"be equal."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
dy_dims
[
0
],
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"The Input(X) and Input(Label) should have the same "
"be equal."
);
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
"The 2nd dimension of Input(Y@Grad) should be 1."
);
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"When Attr(soft_label) == true, the
2nd
dimension of "
"When Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
"Input(X) and Input(Label) should be equal."
);
}
else
{
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1
,
"When Attr(soft_label) == false, the
2nd
dimension of "
"When Attr(soft_label) == false, the
last
dimension of "
"Input(Label) should be 1."
);
"Input(Label) should be 1."
);
}
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
...
@@ -113,18 +122,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -113,18 +122,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
"(Tensor, default Tensor<float>), a tensor whose last dimension "
" where N is the batch size and D is the number of classes. "
"size is equal to the number of classes. This input is a "
"This input is a probability computed by the previous operator, "
"probability computed by the previous operator, which is almost "
"which is almost always the result of a softmax operator."
);
"always the result of a softmax operator."
);
AddInput
(
"Label"
,
AddInput
(
"(Tensor), the ground truth which is a 2-D tensor. When "
"Label"
,
"soft_label is set to false, Label is a Tensor<int64> with shape "
"(Tensor), the tensor which represents the ground truth. It has the "
"[N x 1]. When soft_label is set to true, Label is a "
"same shape with 'X' except the last dimension. When soft_label is set "
"Tensor<float/double> with shape [N x D]."
);
"to false, the last dimension size is 1; when soft_label is set to "
"true, the last dimension size is equal to the number of classes."
);
AddOutput
(
"Y"
,
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"[N x 1]. The cross entropy loss."
);
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss."
);
AddAttr
<
bool
>
(
"soft_label"
,
AddAttr
<
bool
>
(
"soft_label"
,
"(bool, default false), a flag indicating whether to "
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels."
)
"interpretate the given labels as soft labels."
)
...
@@ -132,6 +143,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -132,6 +143,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
AddComment
(
R"DOC(
CrossEntropy Operator.
CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
It supports both standard cross-entropy and soft-label cross-entropy loss
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
computation.
1) One-hot cross-entropy:
1) One-hot cross-entropy:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录