未验证 提交 7b11e73b 编写于 作者: Q Qiyang Min 提交者: GitHub

Merge pull request #16660 from velconia/imperative_dqn

Imperative test layers without parameters
...@@ -48,7 +48,7 @@ class Conv2D(layers.Layer): ...@@ -48,7 +48,7 @@ class Conv2D(layers.Layer):
bias_attr=None, bias_attr=None,
dtype=core.VarDesc.VarType.FP32): dtype=core.VarDesc.VarType.FP32):
assert param_attr is not False, "param_attr should not be False here." assert param_attr is not False, "param_attr should not be False here."
super(Conv2D, self).__init__(name_scope) super(Conv2D, self).__init__(name_scope, dtype)
self._groups = groups self._groups = groups
self._stride = utils.convert_to_list(stride, 2, 'stride') self._stride = utils.convert_to_list(stride, 2, 'stride')
self._padding = utils.convert_to_list(padding, 2, 'padding') self._padding = utils.convert_to_list(padding, 2, 'padding')
...@@ -503,7 +503,7 @@ class FC(layers.Layer): ...@@ -503,7 +503,7 @@ class FC(layers.Layer):
num_flatten_dims=1, num_flatten_dims=1,
dtype=core.VarDesc.VarType.FP32, dtype=core.VarDesc.VarType.FP32,
act=None): act=None):
super(FC, self).__init__(name_scope) super(FC, self).__init__(name_scope, dtype)
self._size = size self._size = size
self._num_flatten_dims = num_flatten_dims self._num_flatten_dims = num_flatten_dims
...@@ -608,7 +608,7 @@ class BatchNorm(layers.Layer): ...@@ -608,7 +608,7 @@ class BatchNorm(layers.Layer):
do_model_average_for_mean_and_var=False, do_model_average_for_mean_and_var=False,
fuse_with_relu=False, fuse_with_relu=False,
use_global_stats=False): use_global_stats=False):
super(BatchNorm, self).__init__(name_scope) super(BatchNorm, self).__init__(name_scope, dtype)
self._param_attr = param_attr self._param_attr = param_attr
self._param_attr = bias_attr self._param_attr = bias_attr
self._act = act self._act = act
...@@ -760,7 +760,7 @@ class Embedding(layers.Layer): ...@@ -760,7 +760,7 @@ class Embedding(layers.Layer):
param_attr=None, param_attr=None,
dtype='float32'): dtype='float32'):
super(Embedding, self).__init__(name_scope) super(Embedding, self).__init__(name_scope, dtype)
self._size = size self._size = size
self._is_sparse = is_sparse self._is_sparse = is_sparse
self._is_distributed = is_distributed self._is_distributed = is_distributed
...@@ -1008,7 +1008,7 @@ class GRUUnit(layers.Layer): ...@@ -1008,7 +1008,7 @@ class GRUUnit(layers.Layer):
gate_activation='sigmoid', gate_activation='sigmoid',
origin_mode=False, origin_mode=False,
dtype='float32'): dtype='float32'):
super(GRUUnit, self).__init__(name_scope) super(GRUUnit, self).__init__(name_scope, dtype)
activation_dict = dict( activation_dict = dict(
identity=0, identity=0,
......
...@@ -481,6 +481,8 @@ def dynamic_lstm(input, ...@@ -481,6 +481,8 @@ def dynamic_lstm(input,
forward, _ = fluid.layers.dynamic_lstm( forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False) input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
""" """
assert _in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals()) helper = LayerHelper('lstm', **locals())
size = size // 4 size = size // 4
...@@ -865,6 +867,9 @@ def dynamic_lstmp(input, ...@@ -865,6 +867,9 @@ def dynamic_lstmp(input,
proj_activation="tanh") proj_activation="tanh")
""" """
assert _in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstmp', **locals()) helper = LayerHelper('lstmp', **locals())
size = size // 4 size = size // 4
...@@ -1036,6 +1041,9 @@ def dynamic_gru(input, ...@@ -1036,6 +1041,9 @@ def dynamic_gru(input,
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim) hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
""" """
assert _in_dygraph_mode(
) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
helper = LayerHelper('gru', **locals()) helper = LayerHelper('gru', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -1752,6 +1760,8 @@ def sequence_conv(input, ...@@ -1752,6 +1760,8 @@ def sequence_conv(input,
Variable: output of sequence_conv Variable: output of sequence_conv
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_conv', **locals()) helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters] filter_shape = [filter_size * input.shape[1], num_filters]
...@@ -1811,6 +1821,8 @@ def sequence_softmax(input, use_cudnn=False, name=None): ...@@ -1811,6 +1821,8 @@ def sequence_softmax(input, use_cudnn=False, name=None):
dtype='float32', lod_level=1) dtype='float32', lod_level=1)
x_sequence_softmax = fluid.layers.sequence_softmax(input=x) x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals()) helper = LayerHelper('sequence_softmax', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype) softmax_out = helper.create_variable_for_type_inference(dtype)
...@@ -2303,6 +2315,8 @@ def sequence_pool(input, pool_type, is_test=False): ...@@ -2303,6 +2315,8 @@ def sequence_pool(input, pool_type, is_test=False):
last_x = fluid.layers.sequence_pool(input=x, pool_type='last') last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first') first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pool', **locals()) helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype) pool_out = helper.create_variable_for_type_inference(dtype)
...@@ -2342,6 +2356,8 @@ def sequence_concat(input, name=None): ...@@ -2342,6 +2356,8 @@ def sequence_concat(input, name=None):
out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3]) out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals()) helper = LayerHelper('sequence_concat', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op( helper.append_op(
...@@ -2469,6 +2485,8 @@ def sequence_slice(input, offset, length, name=None): ...@@ -2469,6 +2485,8 @@ def sequence_slice(input, offset, length, name=None):
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length) length=length)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals()) helper = LayerHelper("sequence_slice", **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype) out = helper.create_variable_for_type_inference(dtype)
...@@ -3928,6 +3946,8 @@ def sequence_expand(x, y, ref_level=-1, name=None): ...@@ -3928,6 +3946,8 @@ def sequence_expand(x, y, ref_level=-1, name=None):
dtype='float32', lod_level=1) dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0) out = layers.sequence_expand(x=x, y=y, ref_level=0)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand', input=x, **locals()) helper = LayerHelper('sequence_expand', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype) tmp = helper.create_variable_for_type_inference(dtype)
...@@ -3994,6 +4014,8 @@ def sequence_expand_as(x, y, name=None): ...@@ -3994,6 +4014,8 @@ def sequence_expand_as(x, y, name=None):
dtype='float32', lod_level=1) dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y) out = layers.sequence_expand_as(x=x, y=y)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand_as', input=x, **locals()) helper = LayerHelper('sequence_expand_as', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype) tmp = helper.create_variable_for_type_inference(dtype)
...@@ -4040,6 +4062,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None): ...@@ -4040,6 +4062,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None):
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pad', input=x, **locals()) helper = LayerHelper('sequence_pad', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype) out = helper.create_variable_for_type_inference(dtype)
...@@ -4106,6 +4130,8 @@ def sequence_unpad(x, length, name=None): ...@@ -4106,6 +4130,8 @@ def sequence_unpad(x, length, name=None):
out = fluid.layers.sequence_unpad(x=x, length=len) out = fluid.layers.sequence_unpad(x=x, length=len)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_unpad', input=x, **locals()) helper = LayerHelper('sequence_unpad', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype) out = helper.create_variable_for_type_inference(dtype)
...@@ -5279,6 +5305,8 @@ def sequence_reshape(input, new_dim): ...@@ -5279,6 +5305,8 @@ def sequence_reshape(input, new_dim):
x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1) x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10) x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_reshape', **locals()) helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_variable_for_type_inference(helper.input_dtype()) out = helper.create_variable_for_type_inference(helper.input_dtype())
helper.append_op( helper.append_op(
...@@ -5813,6 +5841,8 @@ def im2sequence(input, ...@@ -5813,6 +5841,8 @@ def im2sequence(input,
input=layer, stride=[1, 1], filter_size=[2, 2]) input=layer, stride=[1, 1], filter_size=[2, 2])
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
if isinstance(filter_size, int): if isinstance(filter_size, int):
filter_size = [filter_size, filter_size] filter_size = [filter_size, filter_size]
...@@ -6229,7 +6259,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None): ...@@ -6229,7 +6259,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
}, },
outputs={'Diff': diff, outputs={'Diff': diff,
'Out': loss}, 'Out': loss},
attrs={'sigma': sigma}) attrs={'sigma': sigma if sigma is not None else 1.0})
return loss return loss
...@@ -7590,6 +7620,8 @@ def sequence_scatter(input, index, updates, name=None): ...@@ -7590,6 +7620,8 @@ def sequence_scatter(input, index, updates, name=None):
output = fluid.layers.sequence_scatter(input, index, updates) output = fluid.layers.sequence_scatter(input, index, updates)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_scatter', **locals()) helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype) out = helper.create_variable_for_type_inference(dtype)
...@@ -8678,6 +8710,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None): ...@@ -8678,6 +8710,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1) x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_enumerate', **locals()) helper = LayerHelper('sequence_enumerate', **locals())
out = helper.create_variable_for_type_inference( out = helper.create_variable_for_type_inference(
helper.input_dtype(), stop_gradient=True) helper.input_dtype(), stop_gradient=True)
...@@ -8717,6 +8751,8 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): ...@@ -8717,6 +8751,8 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
Variable: The output sequence mask. Variable: The output sequence mask.
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_mask', **locals()) helper = LayerHelper('sequence_mask', **locals())
if name is None: if name is None:
...@@ -9767,6 +9803,8 @@ def sequence_reverse(x, name=None): ...@@ -9767,6 +9803,8 @@ def sequence_reverse(x, name=None):
Returns: Returns:
out(${y_type}): ${y_comment} out(${y_type}): ${y_comment}
""" """
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_reverse", **locals()) helper = LayerHelper("sequence_reverse", **locals())
if name is None: if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册