提交 75d987a5 编写于 作者: X xzl

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_depthwise_neon_bug

...@@ -217,8 +217,6 @@ def infer(use_cuda, inference_program, params_dirname): ...@@ -217,8 +217,6 @@ def infer(use_cuda, inference_program, params_dirname):
# The range of random integers is [low, high] # The range of random integers is [low, high]
word = fluid.create_random_int_lodtensor( word = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1) lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
pred = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=PRED_DICT_LEN - 1)
ctx_n2 = fluid.create_random_int_lodtensor( ctx_n2 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1) lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
ctx_n1 = fluid.create_random_int_lodtensor( ctx_n1 = fluid.create_random_int_lodtensor(
...@@ -229,18 +227,20 @@ def infer(use_cuda, inference_program, params_dirname): ...@@ -229,18 +227,20 @@ def infer(use_cuda, inference_program, params_dirname):
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1) lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p2 = fluid.create_random_int_lodtensor( ctx_p2 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1) lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
pred = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=PRED_DICT_LEN - 1)
mark = fluid.create_random_int_lodtensor( mark = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=MARK_DICT_LEN - 1) lod, base_shape, place, low=0, high=MARK_DICT_LEN - 1)
results = inferencer.infer( results = inferencer.infer(
{ {
'word_data': word, 'word_data': word,
'verb_data': pred,
'ctx_n2_data': ctx_n2, 'ctx_n2_data': ctx_n2,
'ctx_n1_data': ctx_n1, 'ctx_n1_data': ctx_n1,
'ctx_0_data': ctx_0, 'ctx_0_data': ctx_0,
'ctx_p1_data': ctx_p1, 'ctx_p1_data': ctx_p1,
'ctx_p2_data': ctx_p2, 'ctx_p2_data': ctx_p2,
'verb_data': pred,
'mark_data': mark 'mark_data': mark
}, },
return_numpy=False) return_numpy=False)
......
...@@ -148,28 +148,6 @@ def decoder_decode(context, is_sparse): ...@@ -148,28 +148,6 @@ def decoder_decode(context, is_sparse):
return translation_ids, translation_scores return translation_ids, translation_scores
def set_init_lod(data, lod, place):
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod(lod)
return res
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def train_program(is_sparse): def train_program(is_sparse):
context = encoder(is_sparse) context = encoder(is_sparse)
rnn_out = decoder_train(context, is_sparse) rnn_out = decoder_train(context, is_sparse)
...@@ -218,7 +196,6 @@ def train(use_cuda, is_sparse, is_local=True): ...@@ -218,7 +196,6 @@ def train(use_cuda, is_sparse, is_local=True):
def decode_main(use_cuda, is_sparse): def decode_main(use_cuda, is_sparse):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
return return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
...@@ -234,26 +211,32 @@ def decode_main(use_cuda, is_sparse): ...@@ -234,26 +211,32 @@ def decode_main(use_cuda, is_sparse):
[1. for _ in range(batch_size)], dtype='float32') [1. for _ in range(batch_size)], dtype='float32')
init_ids_data = init_ids_data.reshape((batch_size, 1)) init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1)) init_scores_data = init_scores_data.reshape((batch_size, 1))
init_lod = [i for i in range(batch_size)] + [batch_size] init_lod = [1] * batch_size
init_lod = [init_lod, init_lod] init_lod = [init_lod, init_lod]
init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)
train_data = paddle.batch( train_data = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000), paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size) batch_size=batch_size)
for _, data in enumerate(train_data()):
init_ids = set_init_lod(init_ids_data, init_lod, place)
init_scores = set_init_lod(init_scores_data, init_lod, place)
src_word_data = to_lodtensor(map(lambda x: x[0], data), place) feed_order = ['src_word_id']
feed_list = [
framework.default_main_program().global_block().var(var_name)
for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
result_ids, result_scores = exe.run( result_ids, result_scores = exe.run(
framework.default_main_program(), framework.default_main_program(),
feed={ feed=feed_dict,
'src_word_id': src_word_data,
'init_ids': init_ids,
'init_scores': init_scores
},
fetch_list=[translation_ids, translation_scores], fetch_list=[translation_ids, translation_scores],
return_numpy=False) return_numpy=False)
print result_ids.lod() print result_ids.lod()
......
...@@ -147,28 +147,6 @@ def decoder_decode(context, is_sparse): ...@@ -147,28 +147,6 @@ def decoder_decode(context, is_sparse):
return translation_ids, translation_scores return translation_ids, translation_scores
def set_init_lod(data, lod, place):
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod(lod)
return res
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def train_main(use_cuda, is_sparse, is_local=True): def train_main(use_cuda, is_sparse, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
return return
...@@ -192,23 +170,25 @@ def train_main(use_cuda, is_sparse, is_local=True): ...@@ -192,23 +170,25 @@ def train_main(use_cuda, is_sparse, is_local=True):
paddle.dataset.wmt14.train(dict_size), buf_size=1000), paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size) batch_size=batch_size)
feed_order = [
'src_word_id', 'target_language_word', 'target_language_next_word'
]
exe = Executor(place) exe = Executor(place)
def train_loop(main_program): def train_loop(main_program):
exe.run(framework.default_startup_program()) exe.run(framework.default_startup_program())
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0 batch_id = 0
for pass_id in xrange(1): for pass_id in xrange(1):
for data in train_data(): for data in train_data():
word_data = to_lodtensor(map(lambda x: x[0], data), place)
trg_word = to_lodtensor(map(lambda x: x[1], data), place)
trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
outs = exe.run(main_program, outs = exe.run(main_program,
feed={ feed=feeder.feed(data),
'src_word_id': word_data,
'target_language_word': trg_word,
'target_language_next_word': trg_word_next
},
fetch_list=[avg_cost]) fetch_list=[avg_cost])
avg_cost_val = np.array(outs[0]) avg_cost_val = np.array(outs[0])
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
...@@ -258,26 +238,32 @@ def decode_main(use_cuda, is_sparse): ...@@ -258,26 +238,32 @@ def decode_main(use_cuda, is_sparse):
[1. for _ in range(batch_size)], dtype='float32') [1. for _ in range(batch_size)], dtype='float32')
init_ids_data = init_ids_data.reshape((batch_size, 1)) init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1)) init_scores_data = init_scores_data.reshape((batch_size, 1))
init_lod = [i for i in range(batch_size)] + [batch_size] init_lod = [1] * batch_size
init_lod = [init_lod, init_lod] init_lod = [init_lod, init_lod]
init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)
train_data = paddle.batch( train_data = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000), paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=batch_size) batch_size=batch_size)
for _, data in enumerate(train_data()):
init_ids = set_init_lod(init_ids_data, init_lod, place)
init_scores = set_init_lod(init_scores_data, init_lod, place)
src_word_data = to_lodtensor(map(lambda x: x[0], data), place) feed_order = ['src_word_id']
feed_list = [
framework.default_main_program().global_block().var(var_name)
for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
result_ids, result_scores = exe.run( result_ids, result_scores = exe.run(
framework.default_main_program(), framework.default_main_program(),
feed={ feed=feed_dict,
'src_word_id': src_word_data,
'init_ids': init_ids,
'init_scores': init_scores
},
fetch_list=[translation_ids, translation_scores], fetch_list=[translation_ids, translation_scores],
return_numpy=False) return_numpy=False)
print result_ids.lod() print result_ids.lod()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册