Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
71dff503
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
71dff503
编写于
10月 03, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
API of GAN
上级
8bf209f9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
134 addition
and
0 deletion
+134
-0
doc/design/gan_api.md
doc/design/gan_api.md
+134
-0
未找到文件。
doc/design/gan_api.md
0 → 100644
浏览文件 @
71dff503
'''
GAN implementation, just a demo.
'''
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging
X = pd.data(pd.float_vector(784))
# Conditional-GAN should be a class.
### Class member function: the initializer.
class DCGAN(object):
def __init__(self, y_dim=None):
# hyper parameters
self.y_dim = y_dim # conditional gan or not
self.batch_size = 100
self.z_dim = z_dim # input noise dimension
# define parameters of discriminators
self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.D_W2 = pd.Varialble(np.random.rand(128, 1))
self.D_b2 = pd.Variable(np.zeros(128))
self.theta_D = [D_W1, D_b1, D_W2, D_b2]
# define parameters of generators
self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
self.G_W2 = pd.Varialble(np.random.rand(128, 1))
self.G_b2 = pd.Variable(np.zeros(128))
self.theta_G = [D_W1, D_b1, D_W2, D_b2]
self.build_model()
### Class member function: Generator Net
def generator(self, z, y = None):
# Generator Net
if not self.y_dim:
z = pd.concat(1, [z, y])
G_h0 = pd.fc(z, self.G_w0, self.G_b0)
G_h0_bn = pd.batch_norm(G_h0)
G_h0_relu = pd.relu(G_h0_bn)
G_h1 = pd.fc(G_h0_relu, self.G_w1, self.G_b1)
G_h1_bn = pd.batch_norm(G_h1)
G_h1_relu = pd.relu(G_h1_bn)
G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
G_im = pd.tanh(G_im)
return G_im
### Class member function: Discriminator Net
def discriminator(self, image):
# Discriminator Net
D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
D_h0_bn = pd.batchnorm(h0)
D_h0_relu = pd.lrelu(h0_bn)
D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
D_h1_bn = pd.batchnorm(D_h1)
D_h1_relu = pd.lrelu(D_h1_bn)
D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
return D_h2
### Class member function: Build the model
def build_model(self):
# input data
if self.y_dim:
self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self.z = pd.data(tf.float32, [None, self.z_size])
# if conditional GAN
if self.y_dim:
self.G = self.generator(self.z, self.y)
self.D_t = self.discriminator(self.images)
# generated fake images
self.sampled = self.sampler(self.z, self.y)
self.D_f = self.discriminator(self.images)
else: # original version of GAN
self.G = self.generator(self.z)
self.D_t = self.discriminator(self.images)
# generate fake images
self.sampled = self.sampler(self.z)
self.D_f = self.discriminator(self.images)
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
self.d_loss = self.d_loss_real + self.d_loss_fake
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
# Main function for the demo:
if __name__ == "__main__":
# dcgan
dcgan = DCGAN()
dcgan.build_model()
# load mnist data
data_X, data_y = self.load_mnist()
# Two subgraphs required!!!
d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss)
g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)
# executor
sess = pd.executor()
# training
for epoch in xrange(10000):
for batch_id in range(N / batch_size):
idx = ...
# sample a batch
batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
# sample z
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
if batch_id % 2 == 0:
sess.run(d_optim,
feed_dict = {dcgan.images: batch_im,
dcgan.y: batch_label,
dcgan.z: batch_z})
else:
sess.run(g_optim,
feed_dict = {dcgan.z: batch_z})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录