Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
6c5a5d07
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c5a5d07
编写于
12月 21, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
format code. test=develop
上级
e7e4f084
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
53 addition
and
569 deletion
+53
-569
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+43
-429
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+9
-139
未找到文件。
paddle/fluid/API.spec
浏览文件 @
6c5a5d07
...
...
@@ -324,7 +324,7 @@ paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', '
class_num', 'ignore_thresh', 'input_siz
e', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', '
anchor_mask', 'class_num', 'ignore_thresh', 'downsampl
e', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
6c5a5d07
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
6c5a5d07
...
...
@@ -22,32 +22,6 @@ from op_test import OpTest
from
paddle.fluid
import
core
# def l1loss(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return (np.abs(y - x) * weight).sum(axis=1)
#
#
# def mse(x, y, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# y = y.reshape((n, -1))
# weight = weight.reshape((n, -1))
# return ((y - x)**2 * weight).sum(axis=1)
#
#
# def sce(x, label, weight):
# n = x.shape[0]
# x = x.reshape((n, -1))
# label = label.reshape((n, -1))
# weight = weight.reshape((n, -1))
# sigmoid_x = expit(x)
# term1 = label * np.log(sigmoid_x)
# term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
# return ((-term1 - term2) * weight).sum(axis=1)
def
l1loss
(
x
,
y
):
return
abs
(
x
-
y
)
...
...
@@ -60,116 +34,6 @@ def sce(x, label):
return
-
term1
-
term2
def
box_iou
(
box1
,
box2
):
b1_x1
=
box1
[
0
]
-
box1
[
2
]
/
2
b1_x2
=
box1
[
0
]
+
box1
[
2
]
/
2
b1_y1
=
box1
[
1
]
-
box1
[
3
]
/
2
b1_y2
=
box1
[
1
]
+
box1
[
3
]
/
2
b2_x1
=
box2
[
0
]
-
box2
[
2
]
/
2
b2_x2
=
box2
[
0
]
+
box2
[
2
]
/
2
b2_y1
=
box2
[
1
]
-
box2
[
3
]
/
2
b2_y2
=
box2
[
1
]
+
box2
[
3
]
/
2
b1_area
=
(
b1_x2
-
b1_x1
)
*
(
b1_y2
-
b1_y1
)
b2_area
=
(
b2_x2
-
b2_x1
)
*
(
b2_y2
-
b2_y1
)
inter_rect_x1
=
max
(
b1_x1
,
b2_x1
)
inter_rect_y1
=
max
(
b1_y1
,
b2_y1
)
inter_rect_x2
=
min
(
b1_x2
,
b2_x2
)
inter_rect_y2
=
min
(
b1_y2
,
b2_y2
)
inter_area
=
max
(
inter_rect_x2
-
inter_rect_x1
,
0
)
*
max
(
inter_rect_y2
-
inter_rect_y1
,
0
)
return
inter_area
/
(
b1_area
+
b2_area
+
inter_area
)
def
build_target
(
gtboxes
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtboxes
.
shape
ignore_thresh
=
attrs
[
"ignore_thresh"
]
anchors
=
attrs
[
"anchors"
]
class_num
=
attrs
[
"class_num"
]
input_size
=
attrs
[
"input_size"
]
an_num
=
len
(
anchors
)
//
2
conf_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tx
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
ty
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tw
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
th
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tweight
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tconf
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tcls
=
np
.
zeros
(
(
n
,
an_num
,
grid_size
,
grid_size
,
class_num
)).
astype
(
'float32'
)
for
i
in
range
(
n
):
for
j
in
range
(
b
):
if
gtboxes
[
i
,
j
,
:].
sum
()
==
0
:
continue
gt_label
=
gtlabel
[
i
,
j
]
gx
=
gtboxes
[
i
,
j
,
0
]
*
grid_size
gy
=
gtboxes
[
i
,
j
,
1
]
*
grid_size
gw
=
gtboxes
[
i
,
j
,
2
]
*
input_size
gh
=
gtboxes
[
i
,
j
,
3
]
*
input_size
gi
=
int
(
gx
)
gj
=
int
(
gy
)
gtbox
=
[
0
,
0
,
gw
,
gh
]
max_iou
=
0
for
k
in
range
(
an_num
):
anchor_box
=
[
0
,
0
,
anchors
[
2
*
k
],
anchors
[
2
*
k
+
1
]]
iou
=
box_iou
(
gtbox
,
anchor_box
)
if
iou
>
max_iou
:
max_iou
=
iou
best_an_index
=
k
if
iou
>
ignore_thresh
:
conf_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
0
conf_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
obj_mask
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tx
[
i
,
best_an_index
,
gj
,
gi
]
=
gx
-
gi
ty
[
i
,
best_an_index
,
gj
,
gi
]
=
gy
-
gj
tw
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gw
/
anchors
[
2
*
best_an_index
])
th
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
])
tweight
[
i
,
best_an_index
,
gj
,
gi
]
=
2.0
-
gtboxes
[
i
,
j
,
2
]
*
gtboxes
[
i
,
j
,
3
]
tconf
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tcls
[
i
,
best_an_index
,
gj
,
gi
,
gt_label
]
=
1
return
(
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
conf_mask
,
obj_mask
)
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
an_num
=
len
(
attrs
[
'anchors'
])
//
2
class_num
=
attrs
[
"class_num"
]
x
=
x
.
reshape
((
n
,
an_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_x
=
x
[:,
:,
:,
:,
0
]
pred_y
=
x
[:,
:,
:,
:,
1
]
pred_w
=
x
[:,
:,
:,
:,
2
]
pred_h
=
x
[:,
:,
:,
:,
3
]
pred_conf
=
x
[:,
:,
:,
:,
4
]
pred_cls
=
x
[:,
:,
:,
:,
5
:]
tx
,
ty
,
tw
,
th
,
tweight
,
tconf
,
tcls
,
conf_mask
,
obj_mask
=
build_target
(
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
obj_weight
=
obj_mask
*
tweight
obj_mask_expand
=
np
.
tile
(
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
loss_x
=
sce
(
pred_x
,
tx
,
obj_weight
)
loss_y
=
sce
(
pred_y
,
ty
,
obj_weight
)
loss_w
=
l1loss
(
pred_w
,
tw
,
obj_weight
)
loss_h
=
l1loss
(
pred_h
,
th
,
obj_weight
)
loss_obj
=
sce
(
pred_conf
,
tconf
,
conf_mask
)
loss_class
=
sce
(
pred_cls
,
tcls
,
obj_mask_expand
)
return
loss_x
+
loss_y
+
loss_w
+
loss_h
+
loss_obj
+
loss_class
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
...
...
@@ -291,8 +155,10 @@ class TestYolov3LossOp(OpTest):
self
.
op_type
=
'yolov3_loss'
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
))
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
]).
astype
(
'int32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
])
gtmask
=
np
.
random
.
randint
(
0
,
2
,
self
.
gtbox_shape
[:
2
])
gtbox
=
gtbox
*
gtmask
[:,
:,
np
.
newaxis
]
gtlabel
=
gtlabel
*
gtmask
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
...
...
@@ -302,7 +168,11 @@ class TestYolov3LossOp(OpTest):
"downsample"
:
self
.
downsample
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTLabel'
:
gtlabel
.
astype
(
'int32'
)
}
self
.
outputs
=
{
'Loss'
:
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录