提交 687a3222 编写于 作者: T tensor-tang

Merge remote-tracking branch 'ups/develop' into refine/im2col

## Motivation
There is a ```gap``` between the ```Program``` defined by
user and the ```Executable``` that can be scheduled
There is a `gap` between the `Program` defined by
user and the `Executable` that can be scheduled
efficiently on heterogeneous hardware, either locally
or distributedly.
Usually, the ```gap``` is bridged by
Usually, the `gap` is bridged by
* A serious transformations with defined order.
* These transformations usually involve
```insert, delete, clustering, split, dependency analysis```.
`insert, delete, clustering, split, dependency analysis`.
* Has a simple way to verify and debug each transformation.
......@@ -38,44 +38,44 @@ design below.
#### Node
```Node``` represents an operation that performs some computation or
`Node` represents an operation that performs some computation or
a variable that is input or output of operation.
```Node```s are connected to other ```Node```s via inputs and outputs.
`Node`s are connected to other `Node`s via inputs and outputs.
Other properties (maybe device placement information) can be added
to ```Node``` in the future if it's a
common requirement of many other ```Pass```es. Otherwise, it should live
in a ```Node``` wrapper class that is private to some ```Pass``` or be
a local member of a ```Pass```.
to `Node` in the future if it's a
common requirement of many other `Pass`es. Otherwise, it should live
in a `Node` wrapper class that is private to some `Pass` or be
a local member of a `Pass`.
#### Graph
```Graph``` contains a list of ```Node```s, which are connected to
`Graph` contains a list of `Node`s, which are connected to
each other via inputs and outputs.
TODO: Better definitions for the graph.
```Graph``` can also contain ```Attribute```s. ```Attribute```s
can be ``any`` thing. For example, it can be a list of "wraper"
nodes. The ```wrapper``` nodes compose ```Node```s and provide
helper method for execution or transformation. ```Attribute```
`Graph` can also contain `Attribute`s. `Attribute`s
can be `any` thing. For example, it can be a list of "wraper"
nodes. The `wrapper` nodes compose `Node`s and provide
helper method for execution or transformation. `Attribute`
can also contain other things that describe some properties of
the ```Graph``` or ```Graph``` nodes. ```Attribute``` can be passed
across ```Pass```. However, it should be used with care.
the `Graph` or `Graph` nodes. `Attribute` can be passed
across `Pass`. However, it should be used with care.
#### Pass
```Pass``` represents a transformation of ```Graph```. Its input
is a ```Graph``` and its output is also a ```Graph```. For example,
a ```Pass``` can simply print out the ```Graph```. A ```Pass```
can also fuse some ```Graph```'s ```Node```s.
`Pass` represents a transformation of `Graph`. Its input
is a `Graph` and its output is also a `Graph`. For example,
a `Pass` can simply print out the `Graph`. A `Pass`
can also fuse some `Graph`'s `Node`s.
#### Optimize
```Optimize``` contains a series of ```Pass``` with defined order.
```Optimize``` transforms a ```Graph``` that only contains raw
modeling logic to a ```Graph``` that can be run efficiently while
`Optimize` contains a series of `Pass` with defined order.
`Optimize` transforms a `Graph` that only contains raw
modeling logic to a `Graph` that can be run efficiently while
maintaining the original modeling logic.
......
......@@ -88,9 +88,8 @@ class BlockDesc {
OpDesc *InsertOp(size_t index);
/*
* Remove Op and its input/output variables.
* Note that for either input or output variable, if it is also an input or
* output variable of other ops, we should remain it.
* Only remove op itself,
* do nothing to its input and output variables
*/
void RemoveOp(size_t s, size_t e);
......
cc_library(var_handle SRCS var_handle.cc DEPS place framework_proto)
cc_library(var_handle SRCS var_handle.cc DEPS place framework_proto node)
cc_library(op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context lod_tensor)
cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS graph)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS graph graph_helper)
cc_library(ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder)
cc_library(ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_builder)
......
......@@ -25,6 +25,7 @@
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/scope.h"
......@@ -67,7 +68,8 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
}
}
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(Graph *result, ir::Node *node,
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
ir::Node *node,
size_t place_id) const {
auto p = places_[place_id];
auto *op_handle = result->Get<GraphOps>("ops").back().get();
......@@ -92,12 +94,11 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(Graph *result, ir::Node *node,
}
std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
const std::vector<std::unique_ptr<ir::Node>> &nodes) const {
const std::vector<ir::Node *> &nodes) const {
std::vector<std::string> send_vars;
// since parameters are all in block 0,
// it's enough to only scan send ops in block 0
for (auto &node : nodes) {
if (node->NodeType() != ir::Node::Type::kOperation) continue;
OpDesc *op = node->Op();
// TODO(Yancey1989): use a graceful method to find send op,
// instead of the the hard code string
......@@ -112,10 +113,9 @@ std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
}
std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
const std::vector<std::unique_ptr<ir::Node>> &nodes) const {
const std::vector<ir::Node *> &nodes) const {
std::vector<std::string> recv_vars;
for (auto &node : nodes) {
if (node->NodeType() != ir::Node::Type::kOperation) continue;
OpDesc *op = node->Op();
// TODO(Yancey1989): use a graceful method to find recv op,
// instead of the hard code string
......@@ -170,6 +170,7 @@ size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
const std::vector<std::string> &var_names) const {
int64_t numel_sum = 0;
for (auto var_name : var_names) {
if (all_vars_.find(var_name) == all_vars_.end()) continue;
auto var_desc = all_vars_.at(var_name);
PADDLE_ENFORCE_NOT_NULL(var_desc);
auto dim = framework::make_ddim(var_desc->GetShape());
......@@ -186,19 +187,70 @@ size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
return dev_id;
}
std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
std::unique_ptr<Graph> graph) const {
// Rebuild the graph structure.
auto nodes = std::move(graph->nodes);
graph->nodes.clear();
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
std::vector<ir::Node *> ret = ir::TopologySortOperations(graph);
size_t last_backward = 0;
for (size_t i = 0; i < ret.size(); ++i) {
if (boost::get<int>(
ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
static_cast<int>(OpRole::kBackward)) {
last_backward = i;
}
}
std::vector<ir::Node *> optimize_ops;
std::vector<ir::Node *> sorted_ret;
for (size_t i = 0; i < ret.size(); ++i) {
if (i < last_backward) {
if (boost::get<int>(ret[i]->Op()->GetAttr(
OpProtoAndCheckerMaker::OpRoleAttrName())) ==
static_cast<int>(OpRole::kOptimize)) {
optimize_ops.push_back(ret[i]);
} else {
sorted_ret.push_back(ret[i]);
}
} else if (i == last_backward) {
sorted_ret.push_back(ret[i]);
// Verify that no operations before optimize ops depends on optimize ops.
std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
optimize_ops.end());
for (ir::Node *n : sorted_ret) {
for (ir::Node *in : n->inputs) {
for (ir::Node *pre_n : in->inputs) {
PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
"optimize operations cannot be depended by forward "
"or backward node %s -> %s",
pre_n->Name(), n->Name());
}
}
}
sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
optimize_ops.end());
} else {
sorted_ret.push_back(ret[i]);
}
}
return sorted_ret;
}
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::Apply(
std::unique_ptr<ir::Graph> graph) const {
// Give the topology sort order and rebuild the graph structure.
std::vector<ir::Node *> sorted_ops = SortOpsAndDelayOptimizeOp(*graph);
auto nodes = graph->ReleaseNodes();
ir::Graph &result = *graph;
for (auto &node : nodes) {
if (node->NodeType() == ir::Node::Type::kVariable) {
if (node->NodeType() == ir::Node::Type::kVariable && node->Var()) {
all_vars_.emplace(node->Name(), node->Var());
}
}
Graph &result = *graph;
std::unordered_set<std::string> og_has_been_broadcast;
// We cannot invoke resize. It is a bug of GCC 4.8
......@@ -207,9 +259,9 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
result.Set("ops", new GraphOps);
// find send/recv vars so that we can place the distributed training
// realted op in the place 0
auto send_vars = FindDistTrainSendVars(nodes);
auto recv_vars = FindDistTrainRecvVars(nodes);
// related op in the place 0
auto send_vars = FindDistTrainSendVars(sorted_ops);
auto recv_vars = FindDistTrainRecvVars(sorted_ops);
std::vector<std::unordered_set<std::string>> bcast_var_name_set;
bcast_var_name_set.resize(places_.size());
......@@ -217,22 +269,18 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
size_t cur_device_id = 0;
bool is_forwarding = true;
// NOTE: Currently, passes before SSAGraphBuilder cannot reorder
// forward, backward nodes. E.g. you can't append an forward node
// at the end of the node list.
// TODO(panyx0718): FIXME: Needs to sort by forward->backward order.
for (auto &node : nodes) {
if (node->NodeType() != ir::Node::Type::kOperation) continue;
for (ir::Node *node : sorted_ops) {
if (boost::get<int>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
static_cast<int>(OpRole::kRPC)) {
CreateRPCOp(&result, node.get());
} else if (IsDistTrainOp(node.get(), send_vars, recv_vars)) {
CreateDistTrainOp(&result, node.get());
} else if (IsScaleLossOp(node.get())) {
CreateRPCOp(&result, node);
} else if (IsDistTrainOp(node, send_vars, recv_vars)) {
CreateDistTrainOp(&result, node);
} else if (IsScaleLossOp(node)) {
// user can customize loss@grad if not use_default_grad_scale_
if (strategy_.gradient_scale_ !=
BuildStrategy::GradientScaleStrategy::kCustomized) {
// TODO(paddle-dev): Why is there no input for this op_handle?
CreateScaleLossGradOp(&result);
}
// This assumes the backward generating code will ensure IsScaleLossOp
......@@ -241,24 +289,23 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
// the block.
is_forwarding = false;
} else {
int op_dev_id = GetOpDeviceID(node.get());
int op_dev_id = GetOpDeviceID(node);
if (op_dev_id != -1) { // This op only runs on one specific device.
CreateComputationalOp(&result, node.get(), op_dev_id);
CreateComputationalOp(&result, node, op_dev_id);
for (ir::Node *n : node->outputs) {
var_name_on_devices_.emplace(n->Name(), op_dev_id);
}
} else {
// This op runs on all devices, and its output may have parameter's
// gradients.
// TODO(paddle-dev): Why is so special about "read" op?
if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
node->Op()->SetAttr("throw_eof_exp", false);
CreateComputationalOps(&result, node.get(), places_.size());
// TODO(paddle-dev): builder shouldn't depend on the out logic of
// a specific op.
CreateComputationalOps(&result, node, places_.size());
const auto &data_var_names = node->Op()->Output("Out");
InsertDataBalanceOp(&result, data_var_names);
} else {
CreateComputationalOps(&result, node.get(), places_.size());
CreateComputationalOps(&result, node, places_.size());
}
if (!is_forwarding && places_.size() > 1) {
......@@ -322,17 +369,17 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
}
}
}
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
PolishGraphToSupportDataHazards(&result);
/*
* Only variables should be the leaves of graph.
*/
AddOutputToLeafOps(&result);
PADDLE_ENFORCE(!ir::HasCircle(result));
return graph;
}
......@@ -357,7 +404,7 @@ void MultiDevSSAGraphBuilder::SetCommunicationContext(
#endif
}
void MultiDevSSAGraphBuilder::CreateBroadcastOp(Graph *result,
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
const std::string &p_name,
size_t src_dev_id) const {
#ifdef PADDLE_WITH_CUDA
......@@ -387,7 +434,7 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(Graph *result,
}
}
void MultiDevSSAGraphBuilder::CreateComputationalOp(Graph *result,
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
ir::Node *node,
int dev_id) const {
result->Get<GraphOps>("ops").emplace_back(
......@@ -396,7 +443,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(Graph *result,
CreateOpHandleIOs(result, node, dev_id);
}
void MultiDevSSAGraphBuilder::InsertAllReduceOp(Graph *result,
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
result->Get<GraphOps>("ops").emplace_back(new AllReduceOpHandle(
......@@ -426,7 +473,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(Graph *result,
}
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
Graph *result, const std::vector<std::string> &datas) const {
ir::Graph *result, const std::vector<std::string> &datas) const {
#ifdef PADDLE_WITH_CUDA
result->Get<GraphOps>("ops").emplace_back(new DataBalanceOpHandle(
result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
......@@ -479,8 +526,8 @@ int MultiDevSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
int dev_id = GetVarDeviceID(param_grad[1]);
PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s]",
node->Op()->Type(), param_grad[0]);
PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
node->Op()->Type(), param_grad[0], param_grad[1]);
return dev_id;
}
......@@ -489,7 +536,7 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
return got == var_name_on_devices_.end() ? -1 : got->second;
}
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(Graph *result) const {
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(ir::Graph *result) const {
for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
......@@ -519,7 +566,7 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(Graph *result) const {
}
}
void MultiDevSSAGraphBuilder::CreateComputationalOps(Graph *result,
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
ir::Node *node,
size_t num_places) const {
for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
......@@ -531,7 +578,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(Graph *result,
}
}
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(Graph *result,
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
const std::string &og,
int dst_dev_id) const {
#ifdef PADDLE_WITH_CUDA
......@@ -564,12 +611,11 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(Graph *result,
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
void MultiDevSSAGraphBuilder::ConnectOp(Graph *result, OpHandleBase *op,
void MultiDevSSAGraphBuilder::ConnectOp(ir::Graph *result, OpHandleBase *op,
const std::string &prev_op_name) const {
for (auto &prev_op : result->Get<GraphOps>("ops")) {
if (prev_op->Name() == prev_op_name) {
auto *dep_var = new DummyVarHandle(
result->CreateEmptyNode("dummy", ir::Node::Type::kVariable));
auto *dep_var = new DummyVarHandle(result->CreateControlDepVar());
prev_op->AddOutput(dep_var);
result->Get<GraphDepVars>("dep_vars").emplace(dep_var);
op->AddInput(dep_var);
......@@ -577,7 +623,7 @@ void MultiDevSSAGraphBuilder::ConnectOp(Graph *result, OpHandleBase *op,
}
}
void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
ir::Node *node) const {
int op_dev_id = -1;
std::vector<std::string> input_var_names;
......@@ -591,6 +637,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
if (node->Op()->Type() == "split_byref" ||
node->Op()->Type() == "split_selected_rows") {
// TODO(paddle-dev): getting the first var is not safe.
op_dev_id = GetVarDeviceID(input_var_names[0]);
if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
op_dev_id = GetAppropriateDeviceID(input_var_names);
......@@ -624,10 +671,14 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
}
// Create RPC related op handles that connects its in ops and out ops.
void MultiDevSSAGraphBuilder::CreateRPCOp(Graph *result, ir::Node *node) const {
void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
ir::Node *node) const {
int op_dev_id = -1;
if (node->Op()->Type() == "send") {
// TODO(paddle-dev): getting the first var is not safe.
op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
"This hack no longer holds, please fix.");
// the variable name which contains .block means it was splited by
// split_byref op
// so that we can balance the variable blocks to all the pserver
......
......@@ -46,11 +46,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const std::vector<Scope *> &local_scopes,
const BuildStrategy &strategy);
#endif
std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const override;
std::unique_ptr<ir::Graph> Apply(
std::unique_ptr<ir::Graph> graph) const override;
int GetVarDeviceID(const std::string &varname) const override;
private:
void CreateOpHandleIOs(Graph *result, ir::Node *node, size_t device_id) const;
void CreateOpHandleIOs(ir::Graph *result, ir::Node *node,
size_t device_id) const;
private:
std::string loss_var_name_;
......@@ -64,8 +66,8 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
bool IsScaleLossOp(ir::Node *node) const;
void CreateRPCOp(Graph *result, ir::Node *node) const;
void CreateDistTrainOp(Graph *result, ir::Node *node) const;
void CreateRPCOp(ir::Graph *result, ir::Node *node) const;
void CreateDistTrainOp(ir::Graph *result, ir::Node *node) const;
/**
* Is this operator as the end-point operator before/after send operator.
......@@ -74,21 +76,22 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const std::vector<std::string> &recv_vars) const;
std::vector<std::string> FindDistTrainSendVars(
const std::vector<std::unique_ptr<ir::Node>> &nodes) const;
const std::vector<ir::Node *> &nodes) const;
std::vector<std::string> FindDistTrainRecvVars(
const std::vector<std::unique_ptr<ir::Node>> &nodes) const;
const std::vector<ir::Node *> &nodes) const;
void ConnectOp(Graph *result, OpHandleBase *op,
void ConnectOp(ir::Graph *result, OpHandleBase *op,
const std::string &prev_op_name) const;
void CreateComputationalOps(Graph *result, ir::Node *node,
void CreateComputationalOps(ir::Graph *result, ir::Node *node,
size_t num_places) const;
void CreateScaleLossGradOp(Graph *result) const;
VarHandle *CreateReduceOp(Graph *result, const std::string &og,
void CreateScaleLossGradOp(ir::Graph *result) const;
VarHandle *CreateReduceOp(ir::Graph *result, const std::string &og,
int dst_dev_id) const;
void CreateComputationalOp(Graph *result, ir::Node *node, int dev_id) const;
void CreateComputationalOp(ir::Graph *result, ir::Node *node,
int dev_id) const;
bool IsParameterGradientOnce(
const std::string &og,
......@@ -96,12 +99,12 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
int GetOpDeviceID(ir::Node *node) const;
void InsertAllReduceOp(Graph *result, const std::string &og) const;
void InsertAllReduceOp(ir::Graph *result, const std::string &og) const;
void InsertDataBalanceOp(Graph *result,
void InsertDataBalanceOp(ir::Graph *result,
const std::vector<std::string> &datas) const;
void CreateBroadcastOp(Graph *result, const std::string &p_name,
void CreateBroadcastOp(ir::Graph *result, const std::string &p_name,
size_t src_dev_id) const;
bool IsSparseGradient(const std::string &og) const;
......
......@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace paddle {
namespace framework {
......@@ -33,7 +34,7 @@ void RPCOpHandle::RunImpl() {
for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_;
// FIXME(Yancey1989): need a better solution instead of use DebugString()
if (in->DebugString() == "dummy") { // HACK
if (ir::IsControlDepVar(*in->Node())) { // HACK
continue;
}
if (in->GeneratedOp()) {
......
......@@ -17,7 +17,7 @@
namespace paddle {
namespace framework {
namespace details {
void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
void SSAGraphBuilder::PolishGraphToSupportDataHazards(ir::Graph *graph) {
for (auto &var_map : graph->Get<GraphVars>("vars")) {
for (auto &name_pair : var_map) {
if (name_pair.second.size() <= 1) {
......@@ -36,9 +36,18 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
// Read Write is the same op.
continue;
}
bool has_dep = false;
for (auto *r_out : read_op->Outputs()) {
for (auto *w_in : write_op->Inputs()) {
if (r_out->Node() == w_in->Node()) {
has_dep = true;
break;
}
}
}
if (has_dep) continue;
auto *dep_var = new DummyVarHandle(
graph->CreateEmptyNode("dummy", ir::Node::Type::kVariable));
auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
read_op->AddOutput(dep_var);
write_op->AddInput(dep_var);
graph->Get<GraphDepVars>("dep_vars").emplace(dep_var);
......@@ -49,7 +58,7 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
}
VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
Graph *graph, ir::Node *node, const platform::Place &place,
ir::Graph *graph, ir::Node *node, const platform::Place &place,
size_t place_offset) {
auto &var_holders = graph->Get<GraphVars>("vars")[place_offset];
auto &var_holder = var_holders[node->Name()];
......@@ -70,7 +79,7 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
return var;
}
void SSAGraphBuilder::CreateOpOutput(Graph *graph, OpHandleBase *op_handle,
void SSAGraphBuilder::CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
ir::Node *new_node,
const platform::Place &place,
size_t place_offset) {
......@@ -82,13 +91,12 @@ void SSAGraphBuilder::CreateOpOutput(Graph *graph, OpHandleBase *op_handle,
op_handle->AddOutput(var);
}
void SSAGraphBuilder::AddOutputToLeafOps(Graph *graph) {
void SSAGraphBuilder::AddOutputToLeafOps(ir::Graph *graph) {
for (auto &op : graph->Get<GraphOps>("ops")) {
if (!op->Outputs().empty()) {
continue;
}
auto *dummy_leaf = new DummyVarHandle(
graph->CreateEmptyNode("dummy", ir::Node::Type::kVariable));
auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
graph->Get<GraphDepVars>("dep_vars").emplace(dummy_leaf);
op->AddOutput(dummy_leaf);
}
......
......@@ -57,26 +57,23 @@ class SSAGraphBuilder : public ir::Pass {
DISABLE_COPY_AND_ASSIGN(SSAGraphBuilder);
protected:
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
static void PolishGraphToSupportDataHazards(Graph *graph);
static VarHandle *CreateOrGetLatestVarHandle(Graph *graph, ir::Node *node,
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
static void PolishGraphToSupportDataHazards(ir::Graph *graph);
static VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
const platform::Place &place,
size_t place_offset);
// Add an output variable (each_var_name, place, place_offset) to op_handle,
// which belongs to graph
static void CreateOpOutput(Graph *graph, OpHandleBase *op_handle,
static void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
ir::Node *new_node, const platform::Place &place,
size_t place_offset);
static void AddOutputToLeafOps(Graph *graph);
static void AddOutputToLeafOps(ir::Graph *graph);
};
} // namespace details
} // namespace framework
......
......@@ -20,7 +20,7 @@ namespace paddle {
namespace framework {
namespace details {
bool SSAGraghBuilderWithChecker::IsValidGraph(const Graph *graph) const {
bool SSAGraghBuilderWithChecker::IsValidGraph(const ir::Graph *graph) const {
std::unordered_map<OpHandleBase *, size_t> pending_ops;
std::unordered_set<VarHandleBase *> pending_vars;
std::unordered_set<VarHandleBase *> ready_vars;
......
......@@ -28,7 +28,8 @@ class SSAGraghBuilderWithChecker : public SSAGraphBuilder {
std::unique_ptr<SSAGraphBuilder>&& builder)
: builder_(std::move(builder)) {}
std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const override {
std::unique_ptr<ir::Graph> Apply(
std::unique_ptr<ir::Graph> graph) const override {
auto new_graph = builder_->Apply(std::move(graph));
PADDLE_ENFORCE(IsValidGraph(new_graph.get()));
return new_graph;
......@@ -38,7 +39,7 @@ class SSAGraghBuilderWithChecker : public SSAGraphBuilder {
return builder_->GetVarDeviceID(var_name);
}
bool IsValidGraph(const Graph* graph) const;
bool IsValidGraph(const ir::Graph* graph) const;
private:
std::unique_ptr<SSAGraphBuilder> builder_;
......
......@@ -21,7 +21,7 @@ namespace framework {
namespace details {
template <typename Callback>
static inline void IterAllVar(const Graph &graph, Callback callback) {
static inline void IterAllVar(const ir::Graph &graph, Callback callback) {
for (auto &each : graph.Get<GraphVars>("vars")) {
for (auto &pair1 : each) {
for (auto &pair2 : pair1.second) {
......@@ -35,7 +35,7 @@ static inline void IterAllVar(const Graph &graph, Callback callback) {
}
}
void GraphvizSSAGraphPrinter::Print(const Graph &graph,
void GraphvizSSAGraphPrinter::Print(const ir::Graph &graph,
std::ostream &sout) const {
size_t var_id = 0;
std::unordered_map<const VarHandleBase *, size_t> vars;
......
......@@ -25,12 +25,12 @@ namespace details {
class SSAGraphPrinter {
public:
virtual ~SSAGraphPrinter() {}
virtual void Print(const Graph& graph, std::ostream& sout) const = 0;
virtual void Print(const ir::Graph& graph, std::ostream& sout) const = 0;
};
class GraphvizSSAGraphPrinter : public SSAGraphPrinter {
public:
void Print(const Graph& graph, std::ostream& sout) const override;
void Print(const ir::Graph& graph, std::ostream& sout) const override;
};
class SSAGraghBuilderWithPrinter : public SSAGraphBuilder {
......@@ -50,7 +50,8 @@ class SSAGraghBuilderWithPrinter : public SSAGraphBuilder {
stream_ptr_(std::move(sout)),
stream_ref_(*stream_ptr_) {}
std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph) const override {
std::unique_ptr<ir::Graph> Apply(
std::unique_ptr<ir::Graph> graph) const override {
auto new_graph = builder_->Apply(std::move(graph));
printer_->Print(*new_graph, stream_ref_);
return new_graph;
......
......@@ -21,7 +21,8 @@ namespace framework {
namespace details {
ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
const ExecutionStrategy &strategy, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, std::unique_ptr<Graph> &&graph)
const std::vector<platform::Place> &places,
std::unique_ptr<ir::Graph> &&graph)
: graph_(std::move(graph)),
pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_)
: nullptr),
......
......@@ -40,7 +40,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
ThreadedSSAGraphExecutor(const ExecutionStrategy &strategy,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
std::unique_ptr<Graph> &&graph);
std::unique_ptr<ir::Graph> &&graph);
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
......@@ -53,7 +53,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details::OpHandleBase *op);
private:
std::unique_ptr<Graph> graph_;
std::unique_ptr<ir::Graph> graph_;
std::unique_ptr<::ThreadPool> pool_;
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
......
......@@ -26,7 +26,7 @@ std::string VarHandle::DebugString() const {
return ss.str();
}
std::string DummyVarHandle::DebugString() const { return "dummy"; }
std::string DummyVarHandle::DebugString() const { return node_->Name(); }
} // namespace details
} // namespace framework
} // namespace paddle
cc_library(node SRCS node.cc DEPS proto_desc)
cc_library(graph SRCS graph.cc DEPS node)
cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
cc_library(pass SRCS pass.cc DEPS graph node)
cc_test(graph_test SRCS graph_test.cc DEPS graph proto_desc op_registry)
cc_test(graph_test SRCS graph_test.cc DEPS graph op_registry)
cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph_helper op_registry)
......@@ -12,14 +12,18 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
namespace paddle {
namespace framework {
namespace ir {
// NOTE(paddle-dev): This graph contains circle.
Graph::Graph(const ProgramDesc &program) : program_(program) {
VLOG(3) << "block in program:" << program_.Size();
std::unordered_map<std::string, VarDesc *> all_vars;
......@@ -27,40 +31,87 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
all_vars.emplace(var->Name(), var);
}
std::map<std::string, ir::Node *> var_nodes;
std::map<std::string, std::vector<ir::Node *>> var_nodes;
for (auto *op : program.Block(0).AllOps()) {
ir::Node *node = CreateOpNode(op);
// For input args, reuse the same var name if it was created before.
// Otherwise, create a new one.
for (auto &each_var_name : op->InputArgumentNames()) {
ir::Node *var = nullptr;
if (var_nodes.find(each_var_name) != var_nodes.end()) {
var = var_nodes.at(each_var_name);
var = var_nodes.at(each_var_name).back();
} else if (all_vars.count(each_var_name) != 0) {
var = CreateVarNode(all_vars.at(each_var_name));
var_nodes[each_var_name] = var;
var_nodes[each_var_name].push_back(var);
} else {
// TODO(paddle-dev): Seems some assumption doesn't hold?
VLOG(3) << op->Type()
<< " input var not in all_var list: " << each_var_name;
// Operation input var can be optional (dispensable). Which means
// the operation doesn't really need the var at runtime. In this
// case, the no-existed var is ready at the beginning.
var = CreateEmptyNode(each_var_name, ir::Node::Type::kVariable);
var_nodes[each_var_name] = var;
var_nodes[each_var_name].push_back(var);
}
node->inputs.push_back(var);
var->outputs.push_back(node);
}
// For output args, always create a new var.
for (auto &each_var_name : op->OutputArgumentNames()) {
ir::Node *var = nullptr;
if (var_nodes.find(each_var_name) != var_nodes.end()) {
var = var_nodes.at(each_var_name);
} else {
var = CreateVarNode(all_vars.at(each_var_name));
var_nodes[each_var_name] = var;
}
ir::Node *var = CreateVarNode(all_vars.at(each_var_name));
var_nodes[each_var_name].push_back(var);
node->outputs.push_back(var);
var->inputs.push_back(node);
}
}
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
for (auto &var : var_nodes) {
auto &versions = var.second;
if (versions.size() <= 1) continue;
auto it_new = versions.rbegin();
auto it_old = versions.rbegin();
++it_old;
for (; it_old != versions.rend(); it_new = it_old, ++it_old) {
ir::Node *write_op =
(*it_new)->inputs.empty() ? nullptr : (*it_new)->inputs[0];
const auto &read_ops = (*it_old)->outputs;
for (auto *read_op : read_ops) {
// Manually add a dependency var from read_op to write_op;
if (read_op == write_op) {
// Read Write is the same op.
continue;
}
// 2 ops might have been connected via other vars.
bool has_dep = false;
for (ir::Node *r_out : read_op->outputs) {
for (ir::Node *w_in : write_op->inputs) {
if (r_out == w_in) {
has_dep = true;
break;
}
}
}
if (has_dep) continue;
ir::Node *dep_var = CreateControlDepVar();
read_op->outputs.push_back(dep_var);
dep_var->inputs.push_back(read_op);
write_op->inputs.push_back(dep_var);
dep_var->outputs.push_back(write_op);
}
}
}
}
bool IsControlDepVar(const ir::Node &var) {
return var.Name().find(ir::Node::kControlDepVarName) != std::string::npos;
}
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -26,13 +26,14 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace ir {
class Graph {
public:
explicit Graph(const ProgramDesc& program);
explicit Graph(const ProgramDesc &program);
virtual ~Graph() {
for (auto& attr : attrs_) {
for (auto &attr : attrs_) {
attr_dels_[attr.first]();
}
attrs_.clear();
......@@ -40,12 +41,12 @@ class Graph {
}
template <typename AttrType>
AttrType& Get(const std::string& attr_name) const {
return *boost::any_cast<AttrType*>(attrs_.at(attr_name));
AttrType &Get(const std::string &attr_name) const {
return *boost::any_cast<AttrType *>(attrs_.at(attr_name));
}
template <typename AttrType>
void Set(const std::string& attr_name, AttrType* attr) {
void Set(const std::string &attr_name, AttrType *attr) {
PADDLE_ENFORCE(attrs_.count(attr_name) == 0);
attrs_[attr_name] = attr;
attr_dels_[attr_name] = [attr, attr_name]() {
......@@ -54,29 +55,70 @@ class Graph {
};
}
ir::Node* CreateVarNode(VarDesc* var_desc) {
nodes.emplace_back(new ir::Node(var_desc));
return nodes.back().get();
const std::unordered_set<ir::Node *> &Nodes() const { return node_set_; }
// Create a normal variable with non-null VarDesc.
ir::Node *CreateVarNode(VarDesc *var_desc) {
return AddNode(new ir::Node(var_desc));
}
// Create a normal runnable operator with OpDesc.
ir::Node *CreateOpNode(OpDesc *op_desc) {
return AddNode(new ir::Node(op_desc));
}
ir::Node* CreateOpNode(OpDesc* op_desc) {
nodes.emplace_back(new ir::Node(op_desc));
return nodes.back().get();
// Create a control dependency var that connects 2 operations. The
// var doesn't hold any data. Other than that, it's no different from
// other var, considering dependency analysis.
ir::Node *CreateControlDepVar() {
// TODO(panyx0718): control var name should be really unique.
const std::string name = string::Sprintf(
"%s@%llu", ir::Node::kControlDepVarName, node_set_.size());
return AddNode(new ir::Node(name, ir::Node::Type::kVariable));
}
ir::Node* CreateEmptyNode(const std::string& name, ir::Node::Type type) {
nodes.emplace_back(new ir::Node(name, type));
return nodes.back().get();
// A more free style way of creating a graph node. Mostly use for test
// or "copy" from another node. Avoid using it if possible.
ir::Node *CreateEmptyNode(const std::string &name, ir::Node::Type type) {
return AddNode(new ir::Node(name, type));
}
std::vector<std::unique_ptr<ir::Node>> nodes;
// Clear all node information of the graph and return the ownership of the
// nodes.
std::vector<std::unique_ptr<ir::Node>> ReleaseNodes() {
std::vector<std::unique_ptr<ir::Node>> ret;
for (auto &n : nodes_) {
ret.emplace_back(n.second.release());
}
nodes_.clear();
node_set_.clear();
return ret;
}
private:
// This method takes ownership of `node`.
ir::Node *AddNode(ir::Node *node) {
PADDLE_ENFORCE(node_set_.find(node) == node_set_.end());
nodes_[node].reset(node);
node_set_.insert(node);
return node;
}
void RemoveNode(ir::Node *node) {
PADDLE_ENFORCE(node_set_.find(node) != node_set_.end());
node_set_.erase(node);
nodes_.erase(node);
}
// NOTE: program_ shouldn't be exposed to user.
const ProgramDesc& program_;
const ProgramDesc &program_;
std::map<std::string, boost::any> attrs_;
std::map<std::string, std::function<void(void)>> attr_dels_;
std::map<ir::Node *, std::unique_ptr<ir::Node>> nodes_;
std::unordered_set<ir::Node *> node_set_;
};
bool IsControlDepVar(const ir::Node &var);
} // namespace ir
} // namespace framework
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace ir {
namespace {
void SortHelper(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
ir::Node *node, std::unordered_set<ir::Node *> *visited,
std::vector<ir::Node *> *ret) {
visited->insert(node);
for (auto adj : adj_list.at(node)) {
if (visited->find(adj) == visited->end()) {
SortHelper(adj_list, adj, visited, ret);
}
}
VLOG(3) << "topology sort insert: " << node->Name()
<< reinterpret_cast<void *>(node) << " input " << node->inputs.size();
ret->push_back(node);
}
bool HasCircleHelper(
ir::Node *node,
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list,
std::unordered_set<ir::Node *> *visited,
std::unordered_set<ir::Node *> *in_trace) {
if (visited->find(node) == visited->end()) {
visited->insert(node);
in_trace->insert(node);
for (ir::Node *in : adj_list.at(node)) {
if (visited->find(in) == visited->end() &&
HasCircleHelper(in, adj_list, visited, in_trace)) {
return true;
} else if (in_trace->find(in) != in_trace->end()) {
return true;
}
}
}
in_trace->erase(node);
return false;
}
bool HasCircleInternal(
const std::map<ir::Node *, std::unordered_set<ir::Node *>> &adj_list) {
std::unordered_set<ir::Node *> visited;
std::unordered_set<ir::Node *> in_trace;
for (auto &adj : adj_list) {
if (HasCircleHelper(adj.first, adj_list, &visited, &in_trace)) {
return true;
}
}
return false;
}
} // namespace
bool HasCircle(const Graph &graph) {
return HasCircleInternal(BuildOperationAdjList(graph));
}
std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list =
BuildOperationAdjList(graph);
PADDLE_ENFORCE(!HasCircleInternal(adj_list));
std::unordered_set<ir::Node *> visited;
std::vector<ir::Node *> ret;
for (auto adj : adj_list) {
if (visited.find(adj.first) == visited.end()) {
SortHelper(adj_list, adj.first, &visited, &ret);
}
}
return ret;
}
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph) {
std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list;
for (auto &n : graph.Nodes()) {
if (n->NodeType() != ir::Node::Type::kOperation) continue;
if (adj_list.find(n) == adj_list.end()) {
adj_list[n] = std::unordered_set<ir::Node *>();
}
for (auto &var : n->inputs) {
for (auto &adj_n : var->inputs) {
PADDLE_ENFORCE(adj_n->NodeType() == ir::Node::Type::kOperation);
adj_list[n].insert(adj_n);
VLOG(3) << "adj " << adj_n->Name() << reinterpret_cast<void *>(adj_n)
<< " -> " << n->Name() << reinterpret_cast<void *>(n)
<< " via " << var->Name() << reinterpret_cast<void *>(var);
}
}
}
return adj_list;
}
} // namespace ir
} // namespace framework
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
namespace paddle {
namespace framework {
namespace ir {
// Test if the graph contains circle.
bool HasCircle(const Graph &graph);
// Topology Sort the operations in the graph from inputs to outputs.
// `graph` cannot contain circle.
std::vector<ir::Node *> TopologySortOperations(const Graph &graph);
// Build an adjacency list of operations for the `graph`.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph);
} // namespace ir
} // namespace framework
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include <string>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/program_desc.h"
namespace paddle {
namespace framework {
namespace ir {
void BuildCircleGraph(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
o1->outputs.push_back(v1);
o1->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o1);
}
void BuildCircleGraph2(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* o2 = g->CreateEmptyNode("op2", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
ir::Node* v2 = g->CreateEmptyNode("var2", Node::Type::kVariable);
o1->outputs.push_back(v1);
o2->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o2);
o2->outputs.push_back(v2);
o1->inputs.push_back(v2);
v2->inputs.push_back(o2);
v2->outputs.push_back(o1);
}
void BuildNoCircleGraph(Graph* g) {
ir::Node* o1 = g->CreateEmptyNode("op1", Node::Type::kOperation);
ir::Node* o2 = g->CreateEmptyNode("op2", Node::Type::kOperation);
ir::Node* o3 = g->CreateEmptyNode("op3", Node::Type::kOperation);
ir::Node* o4 = g->CreateEmptyNode("op4", Node::Type::kOperation);
ir::Node* o5 = g->CreateEmptyNode("op5", Node::Type::kOperation);
ir::Node* v1 = g->CreateEmptyNode("var1", Node::Type::kVariable);
ir::Node* v2 = g->CreateEmptyNode("var2", Node::Type::kVariable);
ir::Node* v3 = g->CreateEmptyNode("var3", Node::Type::kVariable);
ir::Node* v4 = g->CreateEmptyNode("var4", Node::Type::kVariable);
// o1->v1->o2
o1->outputs.push_back(v1);
o2->inputs.push_back(v1);
v1->inputs.push_back(o1);
v1->outputs.push_back(o2);
// o2->v2->o3
// o2->v2->o4
o2->outputs.push_back(v2);
o3->inputs.push_back(v2);
o4->inputs.push_back(v2);
v2->inputs.push_back(o2);
v2->outputs.push_back(o3);
v2->outputs.push_back(o4);
// o2->v3->o5
o2->outputs.push_back(v3);
o5->inputs.push_back(v3);
v3->inputs.push_back(o2);
v3->outputs.push_back(o5);
// o3-v4->o5
o3->outputs.push_back(v4);
o5->inputs.push_back(v4);
v4->inputs.push_back(o3);
v4->outputs.push_back(o5);
}
TEST(GraphHelperTest, Basic) {
ProgramDesc prog;
Graph g(prog);
BuildCircleGraph(&g);
ASSERT_TRUE(HasCircle(g));
Graph g2(prog);
BuildCircleGraph2(&g2);
ASSERT_TRUE(HasCircle(g2));
auto adj_list = BuildOperationAdjList(g2);
for (auto& adj : adj_list) {
auto& adj_set = adj.second;
if (adj.first->Name() == "op1") {
ASSERT_EQ((*adj_set.begin())->Name(), "op2");
} else if (adj.first->Name() == "op2") {
ASSERT_EQ((*adj_set.begin())->Name(), "op1");
} else {
ASSERT_TRUE(false);
}
}
Graph g3(prog);
BuildNoCircleGraph(&g3);
ASSERT_FALSE(HasCircle(g3));
auto sorted = TopologySortOperations(g3);
std::map<std::string, size_t> node_map;
for (size_t i = 0; i < sorted.size(); ++i) {
node_map[sorted[i]->Name()] = i;
}
ASSERT_EQ(node_map.at("op1"), 0);
ASSERT_EQ(node_map.at("op2"), 1);
ASSERT_TRUE(node_map.at("op3") < node_map.at("op5"));
}
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -76,6 +76,7 @@ TEST(GraphTest, Basic) {
op->SetType("sum");
op->SetInput("X", {"test_a", "test_b", "test_c"});
op->SetOutput("Out", {"test_out"});
op->SetAttr("op_role", 1);
prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
......@@ -92,21 +93,22 @@ TEST(GraphTest, Basic) {
ASSERT_EQ(proto::VarType::LOD_TENSOR,
prog.MutableBlock(0)->Var("test_out")->GetType());
std::unique_ptr<Graph> g(new Graph(prog));
ASSERT_EQ(g->nodes[0]->Name(), "sum");
ASSERT_EQ(g->nodes[0]->inputs[0]->Name(), "test_a");
ASSERT_EQ(g->nodes[0]->inputs[1]->Name(), "test_b");
ASSERT_EQ(g->nodes[0]->inputs[2]->Name(), "test_c");
ASSERT_EQ(g->nodes[0]->outputs[0]->Name(), "test_out");
ASSERT_EQ(g->nodes[1]->Name(), "test_a");
ASSERT_EQ(g->nodes[1]->outputs[0]->Name(), "sum");
ASSERT_EQ(g->nodes[2]->Name(), "test_b");
ASSERT_EQ(g->nodes[2]->outputs[0]->Name(), "sum");
ASSERT_EQ(g->nodes[3]->Name(), "test_c");
ASSERT_EQ(g->nodes[3]->outputs[0]->Name(), "sum");
ASSERT_EQ(g->nodes[4]->Name(), "test_out");
ASSERT_EQ(g->nodes[4]->inputs[0]->Name(), "sum");
ASSERT_EQ(g->nodes.size(), 5);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
for (ir::Node *n : nodes) {
if (n->Name() == "sum") {
ASSERT_EQ(n->inputs.size(), 3);
ASSERT_EQ(n->outputs.size(), 1);
} else if (n->Name() == "test_a" || n->Name() == "test_b" ||
n->Name() == "test_c") {
ASSERT_EQ(n->inputs.size(), 0);
ASSERT_EQ(n->outputs.size(), 1);
} else if (n->Name() == "test_out") {
ASSERT_EQ(n->inputs.size(), 1);
ASSERT_EQ(n->outputs.size(), 0);
}
}
ASSERT_EQ(nodes.size(), 5);
}
} // namespace framework
} // namespace paddle
......@@ -15,5 +15,9 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/node.h"
namespace paddle {
namespace framework {} // namespace framework
namespace framework {
namespace ir {
const char Node::kControlDepVarName[] = "__control_var";
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -27,6 +27,8 @@ namespace ir {
class Node {
public:
enum class Type { kOperation, kVariable };
static const char kControlDepVarName[];
explicit Node(const std::string& name, Type type)
: name_(name), var_desc_(nullptr), op_desc_(nullptr), type_(type) {}
......@@ -50,6 +52,7 @@ class Node {
PADDLE_ENFORCE(type_ == Type::kVariable);
return var_desc_;
}
OpDesc* Op() {
PADDLE_ENFORCE(type_ == Type::kOperation);
return op_desc_;
......
......@@ -132,7 +132,7 @@ ParallelExecutor::ParallelExecutor(
#endif
}
builder_ = builder_factory.Create();
std::unique_ptr<Graph> graph(new Graph(main_program));
std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
graph = builder_->Apply(std::move(graph));
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, places, std::move(graph)));
......
set -x
cd `dirname $0`
rm -rf build/ data/
set +x
......@@ -15,6 +15,10 @@ limitations under the License. */
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
DEFINE_bool(free_idle_memory, false,
"If it is true, Paddle will try to free idle memory trunks during "
"running time.");
namespace paddle {
namespace memory {
namespace detail {
......@@ -152,13 +156,14 @@ void BuddyAllocator::Free(void* p) {
pool_.insert(
IndexSizeAddress(block->index(cache_), block->total_size(cache_), block));
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc();
if (FLAGS_free_idle_memory) {
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc();
// Free normal allocation
CleanIdleNormalAlloc();
// Free normal allocation
CleanIdleNormalAlloc();
}
}
size_t BuddyAllocator::Used() { return total_used_; }
......
......@@ -192,9 +192,9 @@ if(WITH_DISTRIBUTE)
set(DISTRIBUTE_DEPS "")
if(WITH_GRPC)
set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf)
set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf node)
else()
set(DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib)
set(DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib node)
if(WITH_BRPC_RDMA)
find_library(IBVERBS_LIBRARY NAMES ibverbs)
ADD_LIBRARY(ibverbs SHARED IMPORTED GLOBAL)
......
......@@ -77,7 +77,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// cudnn 7 can support groups, no need to do it mannually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
cudnn_conv_desc, groups));
groups = 1;
#endif
......@@ -129,7 +129,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &algo));
......@@ -140,18 +140,18 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
if (dev_ctx.GetComputeCapability() >= 70 &&
std::type_index(typeid(T)) ==
std::type_index(typeid(platform::float16))) {
PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
// Currently tensor core is only enabled using this algo
algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
} else {
PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
cudnn_conv_desc, CUDNN_DEFAULT_MATH));
}
#endif
// get workspace size able to allocate
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_output_desc, algo, &workspace_size_in_bytes));
// It is possible for float16 on Volta GPU to allocate more memory than
......@@ -165,7 +165,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv forward ---------------------
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_filter_desc, filter_data + i * group_offset_filter,
cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
......@@ -218,7 +218,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// cudnn 7 can support groups, no need to do it mannually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
cudnn_conv_desc, groups));
groups = 1;
#endif
......@@ -273,7 +273,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
auto handle = dev_ctx.cudnn_handle();
if (input_grad) {
if (FLAGS_cudnn_deterministic) {
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
handle, cudnn_filter_desc,
// dyDesc: Handle to the previously initialized input
......@@ -289,7 +289,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
}
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
handle, cudnn_filter_desc, cudnn_output_grad_desc,
cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
......@@ -298,7 +298,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
if (filter_grad) {
if (FLAGS_cudnn_deterministic) {
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
handle, cudnn_input_desc, cudnn_output_grad_desc,
cudnn_conv_desc, cudnn_filter_desc,
......@@ -308,7 +308,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
}
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
cudnn_filter_desc, filter_algo, &tmp_size));
......@@ -326,7 +326,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset input_grad.
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, cudnn_filter_desc,
filter_data + i * group_offset_filter, cudnn_output_grad_desc,
output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
......@@ -339,7 +339,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
// Because beta is zero, it is unnecessary to reset filter_grad.
for (int i = 0; i < groups; i++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
cudnn_conv_desc, filter_algo, cudnn_workspace,
......
......@@ -87,7 +87,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
// Get the algorithm
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
// dxDesc: Handle to the previously initialized output tensor
// descriptor.
......@@ -95,7 +95,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
workspace_size_limit, &algo));
// get workspace size able to allocate
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
cudnn_output_desc, algo, &workspace_size_in_bytes));
......@@ -110,7 +110,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
int filter_offset = filter->numel() / groups;
T alpha = 1.0f, beta = 0.0f;
for (int g = 0; g < groups; g++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g,
cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc,
algo, cudnn_workspace, workspace_size_in_bytes, &beta,
......@@ -178,11 +178,11 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
auto handle = dev_ctx.cudnn_handle();
if (input_grad) {
// choose backward algorithm for data
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_input_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
workspace_size_limit, &data_algo));
PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
cudnn_input_desc, data_algo, &fwd_ws_size));
workspace_size_in_bytes = std::max(workspace_size_in_bytes, fwd_ws_size);
......@@ -190,7 +190,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
if (filter_grad) {
// choose backward algorithm for filter
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
cudnn_filter_desc,
......@@ -198,7 +198,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
workspace_size_limit, &filter_algo));
// get workspace for backwards filter algorithm
PADDLE_ENFORCE(
CUDNN_ENFORCE(
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
cudnn_filter_desc, filter_algo, &bwd_filter_ws_size));
......@@ -222,7 +222,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
// Because beta is zero, it is unnecessary to reset input_grad.
for (int g = 0; g < groups; g++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
handle, &alpha, cudnn_output_desc,
output_grad_data + output_grad_offset * g, cudnn_filter_desc,
filter_data + filter_offset * g, cudnn_conv_desc, data_algo,
......@@ -237,7 +237,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset filter_grad.
// Gradient with respect to the filter
for (int g = 0; g < groups; g++) {
PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, cudnn_output_desc,
output_grad_data + output_grad_offset * g, cudnn_input_desc,
input_data + input_offset * g, cudnn_conv_desc, filter_algo,
......
......@@ -52,7 +52,7 @@ void SoftmaxCUDNNFunctor<T>::operator()(
xDesc.descriptor<T>(layout, cudnn_tensor_dims);
cudnnTensorDescriptor_t cudnn_y_desc =
xDesc.descriptor<T>(layout, cudnn_tensor_dims);
PADDLE_ENFORCE(platform::dynload::cudnnSoftmaxForward(
CUDNN_ENFORCE(platform::dynload::cudnnSoftmaxForward(
context.cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_INSTANCE, CudnnDataType<T>::kOne(), cudnn_x_desc,
X->data<T>(), CudnnDataType<T>::kZero(), cudnn_y_desc,
......@@ -83,7 +83,7 @@ void SoftmaxGradCUDNNFunctor<T>::operator()(
dxDesc.descriptor<T>(layout, cudnn_tensor_dims);
cudnnTensorDescriptor_t cudnn_ygrad_desc =
dyDesc.descriptor<T>(layout, cudnn_tensor_dims);
PADDLE_ENFORCE(platform::dynload::cudnnSoftmaxBackward(
CUDNN_ENFORCE(platform::dynload::cudnnSoftmaxBackward(
context.cudnn_handle(), CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_INSTANCE, CudnnDataType<T>::kOne(), cudnn_y_desc,
Y->data<T>(), cudnn_ygrad_desc, YGrad->data<T>(),
......
......@@ -81,7 +81,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle();
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
PADDLE_ENFORCE(platform::dynload::cudnnPoolingForward(
CUDNN_ENFORCE(platform::dynload::cudnnPoolingForward(
handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
cudnn_output_desc, output_data));
}
......@@ -154,7 +154,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
// Because beta is zero, it is unnecessary to reset input_grad.
PADDLE_ENFORCE(platform::dynload::cudnnPoolingBackward(
CUDNN_ENFORCE(platform::dynload::cudnnPoolingBackward(
handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
&beta, cudnn_input_desc, input_grad_data));
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/node.h"
namespace paddle {
namespace operators {
......@@ -22,7 +23,10 @@ inline bool NeedSend(const framework::Scope& scope,
const std::string& varname) {
// dummy variable is only used in parallel executor to represent
// some dependency relationship, we don't need to send/recv it.
if (varname == "dummy") return false;
// TODO(paddle-dev): Why would parallel executor logic leaked into here?
if (varname.find(framework::ir::Node::kControlDepVarName) !=
std::string::npos)
return false;
auto* var = scope.FindVar(varname);
PADDLE_ENFORCE_NOT_NULL(var, "Can not find variable '%s' in the send side.",
varname);
......
......@@ -59,13 +59,12 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
#define CUDNN_VERSION_MIN(major, minor, patch) \
(CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (status != CUDNN_STATUS_SUCCESS) { \
VLOG(1) << ::paddle::platform::cudnnGetErrorString(status); \
PADDLE_THROW("cuDNN call failed"); \
} \
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) { \
PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
} \
} while (false)
enum class DataLayout { // Not use
......
......@@ -547,6 +547,7 @@ function test_fluid_inference_lib() {
EOF
cd ${PADDLE_ROOT}/paddle/fluid/inference/api/demo_ci
./run.sh ${PADDLE_ROOT} ${WITH_MKL:-ON} ${WITH_GPU:-OFF}
./clean.sh
fi
}
......
......@@ -62,33 +62,33 @@ from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \
trainer.__all__ + inferencer.__all__ + transpiler.__all__ + \
parallel_executor.__all__ + lod_tensor.__all__ + [
'io',
'initializer',
'layers',
'contrib',
'transpiler',
'nets',
'optimizer',
'learning_rate_decay',
'backward',
'regularizer',
'LoDTensor',
'LoDTensorArray',
'CPUPlace',
'CUDAPlace',
'CUDAPinnedPlace',
'Tensor',
'ParamAttr',
'WeightNormParamAttr',
'DataFeeder',
'clip',
'profiler',
'unique_name',
'recordio_writer',
'Scope',
]
trainer.__all__ + inferencer.__all__ + transpiler.__all__ + \
parallel_executor.__all__ + lod_tensor.__all__ + [
'io',
'initializer',
'layers',
'contrib',
'transpiler',
'nets',
'optimizer',
'learning_rate_decay',
'backward',
'regularizer',
'LoDTensor',
'LoDTensorArray',
'CPUPlace',
'CUDAPlace',
'CUDAPinnedPlace',
'Tensor',
'ParamAttr',
'WeightNormParamAttr',
'DataFeeder',
'clip',
'profiler',
'unique_name',
'recordio_writer',
'Scope',
]
def __bootstrap__():
......@@ -123,7 +123,7 @@ def __bootstrap__():
read_env_flags = [
'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir',
'eager_delete_scope', 'use_mkldnn', 'initial_cpu_memory_in_mb',
'init_allocated_mem'
'init_allocated_mem', 'free_idle_memory'
]
if core.is_compiled_with_dist():
read_env_flags.append('rpc_deadline')
......
......@@ -1540,7 +1540,12 @@ class Program(object):
def inference_optimize(self):
"""
This method will create a new program and change the :code:`is_test`
This method will create a new program and do following adjustments on it:
1. Remove all reader variables and their creator ops if exist.
2. Remove the :code:`read_op` if exists.
3. change the :code:`is_test`
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
......@@ -1554,6 +1559,22 @@ class Program(object):
# core.inference_optimize being fixed.
res = Program()
res.desc = core.ProgramDesc(self.desc)
# remove all readers and the read_op if exist
read_op_idx = 0
root_block = res.desc.block(0)
while True:
if read_op_idx >= root_block.op_size() or root_block.op(
read_op_idx).type() == 'read':
break
read_op_idx += 1
if read_op_idx < root_block.op_size():
root_block._remove_op(0, read_op_idx + 1)
for var in root_block.all_vars():
if var.type() == core.VarDesc.VarType.READER:
root_block._remove_var(var.name())
# change all `is_test` attributes to True
for i in xrange(res.desc.num_blocks()):
block = res.desc.block(i)
for j in xrange(block.op_size()):
......
......@@ -443,9 +443,6 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var)
if for_parallel:
main_prog_var = parallel(reader=main_prog_var)
return monkey_patch_reader_methods(main_prog_var)
......
......@@ -779,7 +779,9 @@ class DistributeTranspiler(object):
outputs={"Out": prefetch_output_vars},
attrs={
"epmap": pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
# FIXME(qiao) temporarily disable this config because prefetch
# is not act as other rpc op, it's more like a forward op
# RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
# insert concat_op
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册