Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
687a3222
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
687a3222
编写于
7月 27, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/im2col
上级
65d418f0
ec4c6e1f
变更
39
隐藏空白更改
内联
并排
Showing
39 changed file
with
734 addition
and
253 deletion
+734
-253
doc/fluid/design/ir/draft.md
doc/fluid/design/ir/draft.md
+24
-24
paddle/fluid/framework/block_desc.h
paddle/fluid/framework/block_desc.h
+2
-3
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-2
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+101
-50
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+17
-14
paddle/fluid/framework/details/rpc_op_handle.cc
paddle/fluid/framework/details/rpc_op_handle.cc
+2
-1
paddle/fluid/framework/details/ssa_graph_builder.cc
paddle/fluid/framework/details/ssa_graph_builder.cc
+16
-8
paddle/fluid/framework/details/ssa_graph_builder.h
paddle/fluid/framework/details/ssa_graph_builder.h
+9
-12
paddle/fluid/framework/details/ssa_graph_checker.cc
paddle/fluid/framework/details/ssa_graph_checker.cc
+1
-1
paddle/fluid/framework/details/ssa_graph_checker.h
paddle/fluid/framework/details/ssa_graph_checker.h
+3
-2
paddle/fluid/framework/details/ssa_graph_printer.cc
paddle/fluid/framework/details/ssa_graph_printer.cc
+2
-2
paddle/fluid/framework/details/ssa_graph_printer.h
paddle/fluid/framework/details/ssa_graph_printer.h
+4
-3
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+2
-1
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+2
-2
paddle/fluid/framework/details/var_handle.cc
paddle/fluid/framework/details/var_handle.cc
+1
-1
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+3
-2
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+68
-17
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+58
-16
paddle/fluid/framework/ir/graph_helper.cc
paddle/fluid/framework/ir/graph_helper.cc
+118
-0
paddle/fluid/framework/ir/graph_helper.h
paddle/fluid/framework/ir/graph_helper.h
+40
-0
paddle/fluid/framework/ir/graph_helper_test.cc
paddle/fluid/framework/ir/graph_helper_test.cc
+125
-0
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+17
-15
paddle/fluid/framework/ir/node.cc
paddle/fluid/framework/ir/node.cc
+5
-1
paddle/fluid/framework/ir/node.h
paddle/fluid/framework/ir/node.h
+3
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+1
-1
paddle/fluid/inference/api/demo_ci/clean.sh
paddle/fluid/inference/api/demo_ci/clean.sh
+4
-0
paddle/fluid/memory/detail/buddy_allocator.cc
paddle/fluid/memory/detail/buddy_allocator.cc
+11
-6
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-2
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+13
-13
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
+9
-9
paddle/fluid/operators/math/softmax.cu
paddle/fluid/operators/math/softmax.cu
+2
-2
paddle/fluid/operators/pool_cudnn_op.cu.cc
paddle/fluid/operators/pool_cudnn_op.cu.cc
+2
-2
paddle/fluid/operators/send_recv_util.h
paddle/fluid/operators/send_recv_util.h
+5
-1
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+6
-7
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+1
-0
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+28
-28
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+22
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+0
-3
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+3
-1
未找到文件。
doc/fluid/design/ir/draft.md
浏览文件 @
687a3222
## Motivation
There is a
`
``gap```
between the
```Program``
`
defined by
user and the
`
``Executable``
`
that can be scheduled
There is a
`
gap`
between the
`Program
`
defined by
user and the
`
Executable
`
that can be scheduled
efficiently on heterogeneous hardware, either locally
or distributedly.
Usually, the
`
``gap``
`
is bridged by
Usually, the
`
gap
`
is bridged by
*
A serious transformations with defined order.
*
These transformations usually involve
`
``
insert, delete, clustering, split, dependency analysis``
`.
`
insert, delete, clustering, split, dependency analysis
`
.
*
Has a simple way to verify and debug each transformation.
...
...
@@ -38,44 +38,44 @@ design below.
#### Node
`
``
Node
``
` represents an operation that performs some computation or
`
Node
`
represents an operation that performs some computation or
a variable that is input or output of operation.
`
``
Node
```s are connected to other ```
Node
``
`s via inputs and outputs.
`
Node`
s are connected to other
`Node
`
s via inputs and outputs.
Other properties (maybe device placement information) can be added
to `
``
Node
``
` in the future if it's a
common requirement of many other `
``
Pass
``
`es. Otherwise, it should live
in a `
``
Node
``` wrapper class that is private to some ```
Pass
``
` or be
a local member of a `
``
Pass
``
`.
to
`
Node
`
in the future if it's a
common requirement of many other
`
Pass
`
es. Otherwise, it should live
in a
`
Node`
wrapper class that is private to some
`Pass
`
or be
a local member of a
`
Pass
`
.
#### Graph
`
``
Graph
``` contains a list of ```
Node
``
`s, which are connected to
`
Graph`
contains a list of
`Node
`
s, which are connected to
each other via inputs and outputs.
TODO: Better definitions for the graph.
`
``
Graph
``` can also contain ```
Attribute
```s. ```
Attribute
``
`s
can be `
`any`
` thing. For example, it can be a list of "wraper"
nodes. The `
``
wrapper
``` nodes compose ```
Node
``
`s and provide
helper method for execution or transformation. `
``
Attribute
``
`
`
Graph`
can also contain
`Attribute`
s.
`Attribute
`
s
can be
`
any
`
thing. For example, it can be a list of "wraper"
nodes. The
`
wrapper`
nodes compose
`Node
`
s and provide
helper method for execution or transformation.
`
Attribute
`
can also contain other things that describe some properties of
the `
``
Graph
``` or ```
Graph
``` nodes. ```
Attribute
``
` can be passed
across `
``
Pass
``
`. However, it should be used with care.
the
`
Graph`
or
`Graph`
nodes.
`Attribute
`
can be passed
across
`
Pass
`
. However, it should be used with care.
#### Pass
`
``
Pass
``` represents a transformation of ```
Graph
``
`. Its input
is a `
``
Graph
``` and its output is also a ```
Graph
``
`. For example,
a `
``
Pass
``` can simply print out the ```
Graph
```. A ```
Pass
``
`
can also fuse some `
``
Graph
```'s ```
Node
``
`s.
`
Pass`
represents a transformation of
`Graph
`
. Its input
is a
`
Graph`
and its output is also a
`Graph
`
. For example,
a
`
Pass`
can simply print out the
`Graph`
. A
`Pass
`
can also fuse some
`
Graph`
's
`Node
`
s.
#### Optimize
`
``
Optimize
``` contains a series of ```
Pass
``
` with defined order.
`
``
Optimize
``` transforms a ```
Graph
``
` that only contains raw
modeling logic to a `
``
Graph
``
`
that can be run efficiently while
`
Optimize`
contains a series of
`Pass
`
with defined order.
`
Optimize`
transforms a
`Graph
`
that only contains raw
modeling logic to a
`
Graph
`
that can be run efficiently while
maintaining the original modeling logic.
...
...
paddle/fluid/framework/block_desc.h
浏览文件 @
687a3222
...
...
@@ -88,9 +88,8 @@ class BlockDesc {
OpDesc
*
InsertOp
(
size_t
index
);
/*
* Remove Op and its input/output variables.
* Note that for either input or output variable, if it is also an input or
* output variable of other ops, we should remain it.
* Only remove op itself,
* do nothing to its input and output variables
*/
void
RemoveOp
(
size_t
s
,
size_t
e
);
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
687a3222
cc_library
(
var_handle SRCS var_handle.cc DEPS place framework_proto
)
cc_library
(
var_handle SRCS var_handle.cc DEPS place framework_proto
node
)
cc_library
(
op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context lod_tensor
)
cc_library
(
scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
ssa_graph_builder SRCS ssa_graph_builder.cc DEPS graph
)
cc_library
(
ssa_graph_builder SRCS ssa_graph_builder.cc DEPS graph
graph_helper
)
cc_library
(
ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder
)
cc_library
(
ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_builder
)
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
687a3222
...
...
@@ -25,6 +25,7 @@
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -67,7 +68,8 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
}
}
void
MultiDevSSAGraphBuilder
::
CreateOpHandleIOs
(
Graph
*
result
,
ir
::
Node
*
node
,
void
MultiDevSSAGraphBuilder
::
CreateOpHandleIOs
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
place_id
)
const
{
auto
p
=
places_
[
place_id
];
auto
*
op_handle
=
result
->
Get
<
GraphOps
>
(
"ops"
).
back
().
get
();
...
...
@@ -92,12 +94,11 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(Graph *result, ir::Node *node,
}
std
::
vector
<
std
::
string
>
MultiDevSSAGraphBuilder
::
FindDistTrainSendVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
{
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
{
std
::
vector
<
std
::
string
>
send_vars
;
// since parameters are all in block 0,
// it's enough to only scan send ops in block 0
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
OpDesc
*
op
=
node
->
Op
();
// TODO(Yancey1989): use a graceful method to find send op,
// instead of the the hard code string
...
...
@@ -112,10 +113,9 @@ std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
}
std
::
vector
<
std
::
string
>
MultiDevSSAGraphBuilder
::
FindDistTrainRecvVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
{
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
{
std
::
vector
<
std
::
string
>
recv_vars
;
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
OpDesc
*
op
=
node
->
Op
();
// TODO(Yancey1989): use a graceful method to find recv op,
// instead of the hard code string
...
...
@@ -170,6 +170,7 @@ size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
const
std
::
vector
<
std
::
string
>
&
var_names
)
const
{
int64_t
numel_sum
=
0
;
for
(
auto
var_name
:
var_names
)
{
if
(
all_vars_
.
find
(
var_name
)
==
all_vars_
.
end
())
continue
;
auto
var_desc
=
all_vars_
.
at
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var_desc
);
auto
dim
=
framework
::
make_ddim
(
var_desc
->
GetShape
());
...
...
@@ -186,19 +187,70 @@ size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
return
dev_id
;
}
std
::
unique_ptr
<
Graph
>
MultiDevSSAGraphBuilder
::
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
{
// Rebuild the graph structure.
auto
nodes
=
std
::
move
(
graph
->
nodes
);
graph
->
nodes
.
clear
();
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std
::
vector
<
ir
::
Node
*>
SortOpsAndDelayOptimizeOp
(
const
ir
::
Graph
&
graph
)
{
std
::
vector
<
ir
::
Node
*>
ret
=
ir
::
TopologySortOperations
(
graph
);
size_t
last_backward
=
0
;
for
(
size_t
i
=
0
;
i
<
ret
.
size
();
++
i
)
{
if
(
boost
::
get
<
int
>
(
ret
[
i
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kBackward
))
{
last_backward
=
i
;
}
}
std
::
vector
<
ir
::
Node
*>
optimize_ops
;
std
::
vector
<
ir
::
Node
*>
sorted_ret
;
for
(
size_t
i
=
0
;
i
<
ret
.
size
();
++
i
)
{
if
(
i
<
last_backward
)
{
if
(
boost
::
get
<
int
>
(
ret
[
i
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
optimize_ops
.
push_back
(
ret
[
i
]);
}
else
{
sorted_ret
.
push_back
(
ret
[
i
]);
}
}
else
if
(
i
==
last_backward
)
{
sorted_ret
.
push_back
(
ret
[
i
]);
// Verify that no operations before optimize ops depends on optimize ops.
std
::
unordered_set
<
ir
::
Node
*>
optimize_set
(
optimize_ops
.
begin
(),
optimize_ops
.
end
());
for
(
ir
::
Node
*
n
:
sorted_ret
)
{
for
(
ir
::
Node
*
in
:
n
->
inputs
)
{
for
(
ir
::
Node
*
pre_n
:
in
->
inputs
)
{
PADDLE_ENFORCE
(
optimize_set
.
find
(
pre_n
)
==
optimize_set
.
end
(),
"optimize operations cannot be depended by forward "
"or backward node %s -> %s"
,
pre_n
->
Name
(),
n
->
Name
());
}
}
}
sorted_ret
.
insert
(
sorted_ret
.
end
(),
optimize_ops
.
begin
(),
optimize_ops
.
end
());
}
else
{
sorted_ret
.
push_back
(
ret
[
i
]);
}
}
return
sorted_ret
;
}
std
::
unique_ptr
<
ir
::
Graph
>
MultiDevSSAGraphBuilder
::
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
// Give the topology sort order and rebuild the graph structure.
std
::
vector
<
ir
::
Node
*>
sorted_ops
=
SortOpsAndDelayOptimizeOp
(
*
graph
);
auto
nodes
=
graph
->
ReleaseNodes
();
ir
::
Graph
&
result
=
*
graph
;
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
==
ir
::
Node
::
Type
::
kVariable
)
{
if
(
node
->
NodeType
()
==
ir
::
Node
::
Type
::
kVariable
&&
node
->
Var
()
)
{
all_vars_
.
emplace
(
node
->
Name
(),
node
->
Var
());
}
}
Graph
&
result
=
*
graph
;
std
::
unordered_set
<
std
::
string
>
og_has_been_broadcast
;
// We cannot invoke resize. It is a bug of GCC 4.8
...
...
@@ -207,9 +259,9 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
result
.
Set
(
"ops"
,
new
GraphOps
);
// find send/recv vars so that we can place the distributed training
// re
al
ted op in the place 0
auto
send_vars
=
FindDistTrainSendVars
(
node
s
);
auto
recv_vars
=
FindDistTrainRecvVars
(
node
s
);
// re
la
ted op in the place 0
auto
send_vars
=
FindDistTrainSendVars
(
sorted_op
s
);
auto
recv_vars
=
FindDistTrainRecvVars
(
sorted_op
s
);
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
bcast_var_name_set
;
bcast_var_name_set
.
resize
(
places_
.
size
());
...
...
@@ -217,22 +269,18 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
size_t
cur_device_id
=
0
;
bool
is_forwarding
=
true
;
// NOTE: Currently, passes before SSAGraphBuilder cannot reorder
// forward, backward nodes. E.g. you can't append an forward node
// at the end of the node list.
// TODO(panyx0718): FIXME: Needs to sort by forward->backward order.
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
for
(
ir
::
Node
*
node
:
sorted_ops
)
{
if
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kRPC
))
{
CreateRPCOp
(
&
result
,
node
.
get
()
);
}
else
if
(
IsDistTrainOp
(
node
.
get
()
,
send_vars
,
recv_vars
))
{
CreateDistTrainOp
(
&
result
,
node
.
get
()
);
}
else
if
(
IsScaleLossOp
(
node
.
get
()
))
{
CreateRPCOp
(
&
result
,
node
);
}
else
if
(
IsDistTrainOp
(
node
,
send_vars
,
recv_vars
))
{
CreateDistTrainOp
(
&
result
,
node
);
}
else
if
(
IsScaleLossOp
(
node
))
{
// user can customize loss@grad if not use_default_grad_scale_
if
(
strategy_
.
gradient_scale_
!=
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
)
{
// TODO(paddle-dev): Why is there no input for this op_handle?
CreateScaleLossGradOp
(
&
result
);
}
// This assumes the backward generating code will ensure IsScaleLossOp
...
...
@@ -241,24 +289,23 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
// the block.
is_forwarding
=
false
;
}
else
{
int
op_dev_id
=
GetOpDeviceID
(
node
.
get
()
);
int
op_dev_id
=
GetOpDeviceID
(
node
);
if
(
op_dev_id
!=
-
1
)
{
// This op only runs on one specific device.
CreateComputationalOp
(
&
result
,
node
.
get
()
,
op_dev_id
);
CreateComputationalOp
(
&
result
,
node
,
op_dev_id
);
for
(
ir
::
Node
*
n
:
node
->
outputs
)
{
var_name_on_devices_
.
emplace
(
n
->
Name
(),
op_dev_id
);
}
}
else
{
// This op runs on all devices, and its output may have parameter's
// gradients.
// TODO(paddle-dev): Why is so special about "read" op?
if
(
node
->
Op
()
->
Type
()
==
"read"
&&
strategy_
.
enable_data_balance_
)
{
node
->
Op
()
->
SetAttr
(
"throw_eof_exp"
,
false
);
CreateComputationalOps
(
&
result
,
node
.
get
(),
places_
.
size
());
// TODO(paddle-dev): builder shouldn't depend on the out logic of
// a specific op.
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
const
auto
&
data_var_names
=
node
->
Op
()
->
Output
(
"Out"
);
InsertDataBalanceOp
(
&
result
,
data_var_names
);
}
else
{
CreateComputationalOps
(
&
result
,
node
.
get
()
,
places_
.
size
());
CreateComputationalOps
(
&
result
,
node
,
places_
.
size
());
}
if
(
!
is_forwarding
&&
places_
.
size
()
>
1
)
{
...
...
@@ -322,17 +369,17 @@ std::unique_ptr<Graph> MultiDevSSAGraphBuilder::Apply(
}
}
}
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
PolishGraphToSupportDataHazards
(
&
result
);
/*
* Only variables should be the leaves of graph.
*/
AddOutputToLeafOps
(
&
result
);
PADDLE_ENFORCE
(
!
ir
::
HasCircle
(
result
));
return
graph
;
}
...
...
@@ -357,7 +404,7 @@ void MultiDevSSAGraphBuilder::SetCommunicationContext(
#endif
}
void
MultiDevSSAGraphBuilder
::
CreateBroadcastOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -387,7 +434,7 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(Graph *result,
}
}
void
MultiDevSSAGraphBuilder
::
CreateComputationalOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateComputationalOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
{
result
->
Get
<
GraphOps
>
(
"ops"
).
emplace_back
(
...
...
@@ -396,7 +443,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(Graph *result,
CreateOpHandleIOs
(
result
,
node
,
dev_id
);
}
void
MultiDevSSAGraphBuilder
::
InsertAllReduceOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
InsertAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
{
#ifdef PADDLE_WITH_CUDA
result
->
Get
<
GraphOps
>
(
"ops"
).
emplace_back
(
new
AllReduceOpHandle
(
...
...
@@ -426,7 +473,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(Graph *result,
}
void
MultiDevSSAGraphBuilder
::
InsertDataBalanceOp
(
Graph
*
result
,
const
std
::
vector
<
std
::
string
>
&
datas
)
const
{
ir
::
Graph
*
result
,
const
std
::
vector
<
std
::
string
>
&
datas
)
const
{
#ifdef PADDLE_WITH_CUDA
result
->
Get
<
GraphOps
>
(
"ops"
).
emplace_back
(
new
DataBalanceOpHandle
(
result
->
CreateEmptyNode
(
"data_balance"
,
ir
::
Node
::
Type
::
kOperation
),
...
...
@@ -479,8 +526,8 @@ int MultiDevSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
PADDLE_ENFORCE_EQ
(
param_grad
.
size
(),
2U
);
int
dev_id
=
GetVarDeviceID
(
param_grad
[
1
]);
PADDLE_ENFORCE_NE
(
dev_id
,
-
1
,
"dev_id should not be -1.[%s, %s]"
,
node
->
Op
()
->
Type
(),
param_grad
[
0
]);
PADDLE_ENFORCE_NE
(
dev_id
,
-
1
,
"dev_id should not be -1.[%s, %s
, %s
]"
,
node
->
Op
()
->
Type
(),
param_grad
[
0
]
,
param_grad
[
1
]
);
return
dev_id
;
}
...
...
@@ -489,7 +536,7 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(const std::string &varname) const {
return
got
==
var_name_on_devices_
.
end
()
?
-
1
:
got
->
second
;
}
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
Graph
*
result
)
const
{
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
ir
::
Graph
*
result
)
const
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
...
...
@@ -519,7 +566,7 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(Graph *result) const {
}
}
void
MultiDevSSAGraphBuilder
::
CreateComputationalOps
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateComputationalOps
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
num_places
)
const
{
for
(
size_t
scope_idx
=
0
;
scope_idx
<
num_places
;
++
scope_idx
)
{
...
...
@@ -531,7 +578,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(Graph *result,
}
}
VarHandle
*
MultiDevSSAGraphBuilder
::
CreateReduceOp
(
Graph
*
result
,
VarHandle
*
MultiDevSSAGraphBuilder
::
CreateReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -564,12 +611,11 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(Graph *result,
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
void
MultiDevSSAGraphBuilder
::
ConnectOp
(
Graph
*
result
,
OpHandleBase
*
op
,
void
MultiDevSSAGraphBuilder
::
ConnectOp
(
ir
::
Graph
*
result
,
OpHandleBase
*
op
,
const
std
::
string
&
prev_op_name
)
const
{
for
(
auto
&
prev_op
:
result
->
Get
<
GraphOps
>
(
"ops"
))
{
if
(
prev_op
->
Name
()
==
prev_op_name
)
{
auto
*
dep_var
=
new
DummyVarHandle
(
result
->
CreateEmptyNode
(
"dummy"
,
ir
::
Node
::
Type
::
kVariable
));
auto
*
dep_var
=
new
DummyVarHandle
(
result
->
CreateControlDepVar
());
prev_op
->
AddOutput
(
dep_var
);
result
->
Get
<
GraphDepVars
>
(
"dep_vars"
).
emplace
(
dep_var
);
op
->
AddInput
(
dep_var
);
...
...
@@ -577,7 +623,7 @@ void MultiDevSSAGraphBuilder::ConnectOp(Graph *result, OpHandleBase *op,
}
}
void
MultiDevSSAGraphBuilder
::
CreateDistTrainOp
(
Graph
*
result
,
void
MultiDevSSAGraphBuilder
::
CreateDistTrainOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
int
op_dev_id
=
-
1
;
std
::
vector
<
std
::
string
>
input_var_names
;
...
...
@@ -591,6 +637,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
if
(
node
->
Op
()
->
Type
()
==
"split_byref"
||
node
->
Op
()
->
Type
()
==
"split_selected_rows"
)
{
// TODO(paddle-dev): getting the first var is not safe.
op_dev_id
=
GetVarDeviceID
(
input_var_names
[
0
]);
if
(
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
{
op_dev_id
=
GetAppropriateDeviceID
(
input_var_names
);
...
...
@@ -624,10 +671,14 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(Graph *result,
}
// Create RPC related op handles that connects its in ops and out ops.
void
MultiDevSSAGraphBuilder
::
CreateRPCOp
(
Graph
*
result
,
ir
::
Node
*
node
)
const
{
void
MultiDevSSAGraphBuilder
::
CreateRPCOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
int
op_dev_id
=
-
1
;
if
(
node
->
Op
()
->
Type
()
==
"send"
)
{
// TODO(paddle-dev): getting the first var is not safe.
op_dev_id
=
GetVarDeviceID
(
node
->
inputs
[
0
]
->
Name
());
PADDLE_ENFORCE
(
!
ir
::
IsControlDepVar
(
*
node
->
inputs
[
0
]),
"This hack no longer holds, please fix."
);
// the variable name which contains .block means it was splited by
// split_byref op
// so that we can balance the variable blocks to all the pserver
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
687a3222
...
...
@@ -46,11 +46,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
BuildStrategy
&
strategy
);
#endif
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
;
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
int
GetVarDeviceID
(
const
std
::
string
&
varname
)
const
override
;
private:
void
CreateOpHandleIOs
(
Graph
*
result
,
ir
::
Node
*
node
,
size_t
device_id
)
const
;
void
CreateOpHandleIOs
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
device_id
)
const
;
private:
std
::
string
loss_var_name_
;
...
...
@@ -64,8 +66,8 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
bool
IsScaleLossOp
(
ir
::
Node
*
node
)
const
;
void
CreateRPCOp
(
Graph
*
result
,
ir
::
Node
*
node
)
const
;
void
CreateDistTrainOp
(
Graph
*
result
,
ir
::
Node
*
node
)
const
;
void
CreateRPCOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
void
CreateDistTrainOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
/**
* Is this operator as the end-point operator before/after send operator.
...
...
@@ -74,21 +76,22 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
vector
<
std
::
string
>
&
recv_vars
)
const
;
std
::
vector
<
std
::
string
>
FindDistTrainSendVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
;
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
;
std
::
vector
<
std
::
string
>
FindDistTrainRecvVars
(
const
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>
>
&
nodes
)
const
;
const
std
::
vector
<
ir
::
Node
*
>
&
nodes
)
const
;
void
ConnectOp
(
Graph
*
result
,
OpHandleBase
*
op
,
void
ConnectOp
(
ir
::
Graph
*
result
,
OpHandleBase
*
op
,
const
std
::
string
&
prev_op_name
)
const
;
void
CreateComputationalOps
(
Graph
*
result
,
ir
::
Node
*
node
,
void
CreateComputationalOps
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
num_places
)
const
;
void
CreateScaleLossGradOp
(
Graph
*
result
)
const
;
VarHandle
*
CreateReduceOp
(
Graph
*
result
,
const
std
::
string
&
og
,
void
CreateScaleLossGradOp
(
ir
::
Graph
*
result
)
const
;
VarHandle
*
CreateReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
;
void
CreateComputationalOp
(
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
;
void
CreateComputationalOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
;
bool
IsParameterGradientOnce
(
const
std
::
string
&
og
,
...
...
@@ -96,12 +99,12 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
int
GetOpDeviceID
(
ir
::
Node
*
node
)
const
;
void
InsertAllReduceOp
(
Graph
*
result
,
const
std
::
string
&
og
)
const
;
void
InsertAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
;
void
InsertDataBalanceOp
(
Graph
*
result
,
void
InsertDataBalanceOp
(
ir
::
Graph
*
result
,
const
std
::
vector
<
std
::
string
>
&
datas
)
const
;
void
CreateBroadcastOp
(
Graph
*
result
,
const
std
::
string
&
p_name
,
void
CreateBroadcastOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
;
bool
IsSparseGradient
(
const
std
::
string
&
og
)
const
;
...
...
paddle/fluid/framework/details/rpc_op_handle.cc
浏览文件 @
687a3222
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -33,7 +34,7 @@ void RPCOpHandle::RunImpl() {
for
(
auto
*
in
:
inputs_
)
{
auto
&
p
=
static_cast
<
VarHandle
*>
(
in
)
->
place_
;
// FIXME(Yancey1989): need a better solution instead of use DebugString()
if
(
i
n
->
DebugString
()
==
"dummy"
)
{
// HACK
if
(
i
r
::
IsControlDepVar
(
*
in
->
Node
())
)
{
// HACK
continue
;
}
if
(
in
->
GeneratedOp
())
{
...
...
paddle/fluid/framework/details/ssa_graph_builder.cc
浏览文件 @
687a3222
...
...
@@ -17,7 +17,7 @@
namespace
paddle
{
namespace
framework
{
namespace
details
{
void
SSAGraphBuilder
::
PolishGraphToSupportDataHazards
(
Graph
*
graph
)
{
void
SSAGraphBuilder
::
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
var_map
:
graph
->
Get
<
GraphVars
>
(
"vars"
))
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
...
...
@@ -36,9 +36,18 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
// Read Write is the same op.
continue
;
}
bool
has_dep
=
false
;
for
(
auto
*
r_out
:
read_op
->
Outputs
())
{
for
(
auto
*
w_in
:
write_op
->
Inputs
())
{
if
(
r_out
->
Node
()
==
w_in
->
Node
())
{
has_dep
=
true
;
break
;
}
}
}
if
(
has_dep
)
continue
;
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateEmptyNode
(
"dummy"
,
ir
::
Node
::
Type
::
kVariable
));
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
read_op
->
AddOutput
(
dep_var
);
write_op
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
"dep_vars"
).
emplace
(
dep_var
);
...
...
@@ -49,7 +58,7 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(Graph *graph) {
}
VarHandle
*
SSAGraphBuilder
::
CreateOrGetLatestVarHandle
(
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
var_holders
=
graph
->
Get
<
GraphVars
>
(
"vars"
)[
place_offset
];
auto
&
var_holder
=
var_holders
[
node
->
Name
()];
...
...
@@ -70,7 +79,7 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
return
var
;
}
void
SSAGraphBuilder
::
CreateOpOutput
(
Graph
*
graph
,
OpHandleBase
*
op_handle
,
void
SSAGraphBuilder
::
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
...
...
@@ -82,13 +91,12 @@ void SSAGraphBuilder::CreateOpOutput(Graph *graph, OpHandleBase *op_handle,
op_handle
->
AddOutput
(
var
);
}
void
SSAGraphBuilder
::
AddOutputToLeafOps
(
Graph
*
graph
)
{
void
SSAGraphBuilder
::
AddOutputToLeafOps
(
ir
::
Graph
*
graph
)
{
for
(
auto
&
op
:
graph
->
Get
<
GraphOps
>
(
"ops"
))
{
if
(
!
op
->
Outputs
().
empty
())
{
continue
;
}
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateEmptyNode
(
"dummy"
,
ir
::
Node
::
Type
::
kVariable
));
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
"dep_vars"
).
emplace
(
dummy_leaf
);
op
->
AddOutput
(
dummy_leaf
);
}
...
...
paddle/fluid/framework/details/ssa_graph_builder.h
浏览文件 @
687a3222
...
...
@@ -57,26 +57,23 @@ class SSAGraphBuilder : public ir::Pass {
DISABLE_COPY_AND_ASSIGN
(
SSAGraphBuilder
);
protected:
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
static
void
PolishGraphToSupportDataHazards
(
Graph
*
graph
);
static
VarHandle
*
CreateOrGetLatestVarHandle
(
Graph
*
graph
,
ir
::
Node
*
node
,
/*
Dependency graph has been constructed. However, there are still data
hazards need to be handled.
*/
static
void
PolishGraphToSupportDataHazards
(
ir
::
Graph
*
graph
);
static
VarHandle
*
CreateOrGetLatestVarHandle
(
ir
::
Graph
*
graph
,
ir
::
Node
*
node
,
const
platform
::
Place
&
place
,
size_t
place_offset
);
// Add an output variable (each_var_name, place, place_offset) to op_handle,
// which belongs to graph
static
void
CreateOpOutput
(
Graph
*
graph
,
OpHandleBase
*
op_handle
,
static
void
CreateOpOutput
(
ir
::
Graph
*
graph
,
OpHandleBase
*
op_handle
,
ir
::
Node
*
new_node
,
const
platform
::
Place
&
place
,
size_t
place_offset
);
static
void
AddOutputToLeafOps
(
Graph
*
graph
);
static
void
AddOutputToLeafOps
(
ir
::
Graph
*
graph
);
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/ssa_graph_checker.cc
浏览文件 @
687a3222
...
...
@@ -20,7 +20,7 @@ namespace paddle {
namespace
framework
{
namespace
details
{
bool
SSAGraghBuilderWithChecker
::
IsValidGraph
(
const
Graph
*
graph
)
const
{
bool
SSAGraghBuilderWithChecker
::
IsValidGraph
(
const
ir
::
Graph
*
graph
)
const
{
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
pending_ops
;
std
::
unordered_set
<
VarHandleBase
*>
pending_vars
;
std
::
unordered_set
<
VarHandleBase
*>
ready_vars
;
...
...
paddle/fluid/framework/details/ssa_graph_checker.h
浏览文件 @
687a3222
...
...
@@ -28,7 +28,8 @@ class SSAGraghBuilderWithChecker : public SSAGraphBuilder {
std
::
unique_ptr
<
SSAGraphBuilder
>&&
builder
)
:
builder_
(
std
::
move
(
builder
))
{}
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
{
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
{
auto
new_graph
=
builder_
->
Apply
(
std
::
move
(
graph
));
PADDLE_ENFORCE
(
IsValidGraph
(
new_graph
.
get
()));
return
new_graph
;
...
...
@@ -38,7 +39,7 @@ class SSAGraghBuilderWithChecker : public SSAGraphBuilder {
return
builder_
->
GetVarDeviceID
(
var_name
);
}
bool
IsValidGraph
(
const
Graph
*
graph
)
const
;
bool
IsValidGraph
(
const
ir
::
Graph
*
graph
)
const
;
private:
std
::
unique_ptr
<
SSAGraphBuilder
>
builder_
;
...
...
paddle/fluid/framework/details/ssa_graph_printer.cc
浏览文件 @
687a3222
...
...
@@ -21,7 +21,7 @@ namespace framework {
namespace
details
{
template
<
typename
Callback
>
static
inline
void
IterAllVar
(
const
Graph
&
graph
,
Callback
callback
)
{
static
inline
void
IterAllVar
(
const
ir
::
Graph
&
graph
,
Callback
callback
)
{
for
(
auto
&
each
:
graph
.
Get
<
GraphVars
>
(
"vars"
))
{
for
(
auto
&
pair1
:
each
)
{
for
(
auto
&
pair2
:
pair1
.
second
)
{
...
...
@@ -35,7 +35,7 @@ static inline void IterAllVar(const Graph &graph, Callback callback) {
}
}
void
GraphvizSSAGraphPrinter
::
Print
(
const
Graph
&
graph
,
void
GraphvizSSAGraphPrinter
::
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
{
size_t
var_id
=
0
;
std
::
unordered_map
<
const
VarHandleBase
*
,
size_t
>
vars
;
...
...
paddle/fluid/framework/details/ssa_graph_printer.h
浏览文件 @
687a3222
...
...
@@ -25,12 +25,12 @@ namespace details {
class
SSAGraphPrinter
{
public:
virtual
~
SSAGraphPrinter
()
{}
virtual
void
Print
(
const
Graph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
virtual
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
};
class
GraphvizSSAGraphPrinter
:
public
SSAGraphPrinter
{
public:
void
Print
(
const
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
};
class
SSAGraghBuilderWithPrinter
:
public
SSAGraphBuilder
{
...
...
@@ -50,7 +50,8 @@ class SSAGraghBuilderWithPrinter : public SSAGraphBuilder {
stream_ptr_
(
std
::
move
(
sout
)),
stream_ref_
(
*
stream_ptr_
)
{}
std
::
unique_ptr
<
Graph
>
Apply
(
std
::
unique_ptr
<
Graph
>
graph
)
const
override
{
std
::
unique_ptr
<
ir
::
Graph
>
Apply
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
{
auto
new_graph
=
builder_
->
Apply
(
std
::
move
(
graph
));
printer_
->
Print
(
*
new_graph
,
stream_ref_
);
return
new_graph
;
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
687a3222
...
...
@@ -21,7 +21,8 @@ namespace framework {
namespace
details
{
ThreadedSSAGraphExecutor
::
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
Graph
>
&&
graph
)
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
)
:
graph_
(
std
::
move
(
graph
)),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
687a3222
...
...
@@ -40,7 +40,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
Graph
>
&&
graph
);
std
::
unique_ptr
<
ir
::
Graph
>
&&
graph
);
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
...
...
@@ -53,7 +53,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details
::
OpHandleBase
*
op
);
private:
std
::
unique_ptr
<
Graph
>
graph_
;
std
::
unique_ptr
<
ir
::
Graph
>
graph_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
...
...
paddle/fluid/framework/details/var_handle.cc
浏览文件 @
687a3222
...
...
@@ -26,7 +26,7 @@ std::string VarHandle::DebugString() const {
return
ss
.
str
();
}
std
::
string
DummyVarHandle
::
DebugString
()
const
{
return
"dummy"
;
}
std
::
string
DummyVarHandle
::
DebugString
()
const
{
return
node_
->
Name
()
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
687a3222
cc_library
(
node SRCS node.cc DEPS proto_desc
)
cc_library
(
graph SRCS graph.cc DEPS node
)
cc_library
(
graph_helper SRCS graph_helper.cc DEPS graph
)
cc_library
(
pass SRCS pass.cc DEPS graph node
)
cc_test
(
graph_
test SRCS graph_test.cc DEPS graph proto_desc
op_registry
)
cc_test
(
graph_test SRCS graph_test.cc DEPS graph op_registry
)
cc_test
(
graph_
helper_test SRCS graph_helper_test.cc DEPS graph_helper
op_registry
)
paddle/fluid/framework/ir/graph.cc
浏览文件 @
687a3222
...
...
@@ -12,14 +12,18 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// NOTE(paddle-dev): This graph contains circle.
Graph
::
Graph
(
const
ProgramDesc
&
program
)
:
program_
(
program
)
{
VLOG
(
3
)
<<
"block in program:"
<<
program_
.
Size
();
std
::
unordered_map
<
std
::
string
,
VarDesc
*>
all_vars
;
...
...
@@ -27,40 +31,87 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
all_vars
.
emplace
(
var
->
Name
(),
var
);
}
std
::
map
<
std
::
string
,
ir
::
Node
*
>
var_nodes
;
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>
>
var_nodes
;
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
ir
::
Node
*
node
=
CreateOpNode
(
op
);
// For input args, reuse the same var name if it was created before.
// Otherwise, create a new one.
for
(
auto
&
each_var_name
:
op
->
InputArgumentNames
())
{
ir
::
Node
*
var
=
nullptr
;
if
(
var_nodes
.
find
(
each_var_name
)
!=
var_nodes
.
end
())
{
var
=
var_nodes
.
at
(
each_var_name
);
var
=
var_nodes
.
at
(
each_var_name
)
.
back
()
;
}
else
if
(
all_vars
.
count
(
each_var_name
)
!=
0
)
{
var
=
CreateVarNode
(
all_vars
.
at
(
each_var_name
));
var_nodes
[
each_var_name
]
=
var
;
var_nodes
[
each_var_name
]
.
push_back
(
var
)
;
}
else
{
//
TODO(paddle-dev): Seems some assumption doesn't hold?
VLOG
(
3
)
<<
op
->
Type
()
<<
" input var not in all_var list: "
<<
each_var_name
;
//
Operation input var can be optional (dispensable). Which means
// the operation doesn't really need the var at runtime. In this
// case, the no-existed var is ready at the beginning.
var
=
CreateEmptyNode
(
each_var_name
,
ir
::
Node
::
Type
::
kVariable
);
var_nodes
[
each_var_name
]
=
var
;
var_nodes
[
each_var_name
]
.
push_back
(
var
)
;
}
node
->
inputs
.
push_back
(
var
);
var
->
outputs
.
push_back
(
node
);
}
// For output args, always create a new var.
for
(
auto
&
each_var_name
:
op
->
OutputArgumentNames
())
{
ir
::
Node
*
var
=
nullptr
;
if
(
var_nodes
.
find
(
each_var_name
)
!=
var_nodes
.
end
())
{
var
=
var_nodes
.
at
(
each_var_name
);
}
else
{
var
=
CreateVarNode
(
all_vars
.
at
(
each_var_name
));
var_nodes
[
each_var_name
]
=
var
;
}
ir
::
Node
*
var
=
CreateVarNode
(
all_vars
.
at
(
each_var_name
));
var_nodes
[
each_var_name
].
push_back
(
var
);
node
->
outputs
.
push_back
(
var
);
var
->
inputs
.
push_back
(
node
);
}
}
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
for
(
auto
&
var
:
var_nodes
)
{
auto
&
versions
=
var
.
second
;
if
(
versions
.
size
()
<=
1
)
continue
;
auto
it_new
=
versions
.
rbegin
();
auto
it_old
=
versions
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
versions
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
ir
::
Node
*
write_op
=
(
*
it_new
)
->
inputs
.
empty
()
?
nullptr
:
(
*
it_new
)
->
inputs
[
0
];
const
auto
&
read_ops
=
(
*
it_old
)
->
outputs
;
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
// 2 ops might have been connected via other vars.
bool
has_dep
=
false
;
for
(
ir
::
Node
*
r_out
:
read_op
->
outputs
)
{
for
(
ir
::
Node
*
w_in
:
write_op
->
inputs
)
{
if
(
r_out
==
w_in
)
{
has_dep
=
true
;
break
;
}
}
}
if
(
has_dep
)
continue
;
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
read_op
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
read_op
);
write_op
->
inputs
.
push_back
(
dep_var
);
dep_var
->
outputs
.
push_back
(
write_op
);
}
}
}
}
bool
IsControlDepVar
(
const
ir
::
Node
&
var
)
{
return
var
.
Name
().
find
(
ir
::
Node
::
kControlDepVarName
)
!=
std
::
string
::
npos
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph.h
浏览文件 @
687a3222
...
...
@@ -26,13 +26,14 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Graph
{
public:
explicit
Graph
(
const
ProgramDesc
&
program
);
explicit
Graph
(
const
ProgramDesc
&
program
);
virtual
~
Graph
()
{
for
(
auto
&
attr
:
attrs_
)
{
for
(
auto
&
attr
:
attrs_
)
{
attr_dels_
[
attr
.
first
]();
}
attrs_
.
clear
();
...
...
@@ -40,12 +41,12 @@ class Graph {
}
template
<
typename
AttrType
>
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
template
<
typename
AttrType
>
void
Set
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
void
Set
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
PADDLE_ENFORCE
(
attrs_
.
count
(
attr_name
)
==
0
);
attrs_
[
attr_name
]
=
attr
;
attr_dels_
[
attr_name
]
=
[
attr
,
attr_name
]()
{
...
...
@@ -54,29 +55,70 @@ class Graph {
};
}
ir
::
Node
*
CreateVarNode
(
VarDesc
*
var_desc
)
{
nodes
.
emplace_back
(
new
ir
::
Node
(
var_desc
));
return
nodes
.
back
().
get
();
const
std
::
unordered_set
<
ir
::
Node
*>
&
Nodes
()
const
{
return
node_set_
;
}
// Create a normal variable with non-null VarDesc.
ir
::
Node
*
CreateVarNode
(
VarDesc
*
var_desc
)
{
return
AddNode
(
new
ir
::
Node
(
var_desc
));
}
// Create a normal runnable operator with OpDesc.
ir
::
Node
*
CreateOpNode
(
OpDesc
*
op_desc
)
{
return
AddNode
(
new
ir
::
Node
(
op_desc
));
}
ir
::
Node
*
CreateOpNode
(
OpDesc
*
op_desc
)
{
nodes
.
emplace_back
(
new
ir
::
Node
(
op_desc
));
return
nodes
.
back
().
get
();
// Create a control dependency var that connects 2 operations. The
// var doesn't hold any data. Other than that, it's no different from
// other var, considering dependency analysis.
ir
::
Node
*
CreateControlDepVar
()
{
// TODO(panyx0718): control var name should be really unique.
const
std
::
string
name
=
string
::
Sprintf
(
"%s@%llu"
,
ir
::
Node
::
kControlDepVarName
,
node_set_
.
size
());
return
AddNode
(
new
ir
::
Node
(
name
,
ir
::
Node
::
Type
::
kVariable
));
}
ir
::
Node
*
CreateEmptyNode
(
const
std
::
string
&
name
,
ir
::
Node
::
Type
type
)
{
nodes
.
emplace_back
(
new
ir
::
Node
(
name
,
type
));
return
nodes
.
back
().
get
();
// A more free style way of creating a graph node. Mostly use for test
// or "copy" from another node. Avoid using it if possible.
ir
::
Node
*
CreateEmptyNode
(
const
std
::
string
&
name
,
ir
::
Node
::
Type
type
)
{
return
AddNode
(
new
ir
::
Node
(
name
,
type
));
}
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
nodes
;
// Clear all node information of the graph and return the ownership of the
// nodes.
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
ReleaseNodes
()
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
ret
;
for
(
auto
&
n
:
nodes_
)
{
ret
.
emplace_back
(
n
.
second
.
release
());
}
nodes_
.
clear
();
node_set_
.
clear
();
return
ret
;
}
private:
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
nodes_
[
node
].
reset
(
node
);
node_set_
.
insert
(
node
);
return
node
;
}
void
RemoveNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
!=
node_set_
.
end
());
node_set_
.
erase
(
node
);
nodes_
.
erase
(
node
);
}
// NOTE: program_ shouldn't be exposed to user.
const
ProgramDesc
&
program_
;
const
ProgramDesc
&
program_
;
std
::
map
<
std
::
string
,
boost
::
any
>
attrs_
;
std
::
map
<
std
::
string
,
std
::
function
<
void
(
void
)
>>
attr_dels_
;
std
::
map
<
ir
::
Node
*
,
std
::
unique_ptr
<
ir
::
Node
>>
nodes_
;
std
::
unordered_set
<
ir
::
Node
*>
node_set_
;
};
bool
IsControlDepVar
(
const
ir
::
Node
&
var
);
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_helper.cc
0 → 100644
浏览文件 @
687a3222
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
SortHelper
(
const
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
&
adj_list
,
ir
::
Node
*
node
,
std
::
unordered_set
<
ir
::
Node
*>
*
visited
,
std
::
vector
<
ir
::
Node
*>
*
ret
)
{
visited
->
insert
(
node
);
for
(
auto
adj
:
adj_list
.
at
(
node
))
{
if
(
visited
->
find
(
adj
)
==
visited
->
end
())
{
SortHelper
(
adj_list
,
adj
,
visited
,
ret
);
}
}
VLOG
(
3
)
<<
"topology sort insert: "
<<
node
->
Name
()
<<
reinterpret_cast
<
void
*>
(
node
)
<<
" input "
<<
node
->
inputs
.
size
();
ret
->
push_back
(
node
);
}
bool
HasCircleHelper
(
ir
::
Node
*
node
,
const
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
&
adj_list
,
std
::
unordered_set
<
ir
::
Node
*>
*
visited
,
std
::
unordered_set
<
ir
::
Node
*>
*
in_trace
)
{
if
(
visited
->
find
(
node
)
==
visited
->
end
())
{
visited
->
insert
(
node
);
in_trace
->
insert
(
node
);
for
(
ir
::
Node
*
in
:
adj_list
.
at
(
node
))
{
if
(
visited
->
find
(
in
)
==
visited
->
end
()
&&
HasCircleHelper
(
in
,
adj_list
,
visited
,
in_trace
))
{
return
true
;
}
else
if
(
in_trace
->
find
(
in
)
!=
in_trace
->
end
())
{
return
true
;
}
}
}
in_trace
->
erase
(
node
);
return
false
;
}
bool
HasCircleInternal
(
const
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
&
adj_list
)
{
std
::
unordered_set
<
ir
::
Node
*>
visited
;
std
::
unordered_set
<
ir
::
Node
*>
in_trace
;
for
(
auto
&
adj
:
adj_list
)
{
if
(
HasCircleHelper
(
adj
.
first
,
adj_list
,
&
visited
,
&
in_trace
))
{
return
true
;
}
}
return
false
;
}
}
// namespace
bool
HasCircle
(
const
Graph
&
graph
)
{
return
HasCircleInternal
(
BuildOperationAdjList
(
graph
));
}
std
::
vector
<
ir
::
Node
*>
TopologySortOperations
(
const
Graph
&
graph
)
{
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
adj_list
=
BuildOperationAdjList
(
graph
);
PADDLE_ENFORCE
(
!
HasCircleInternal
(
adj_list
));
std
::
unordered_set
<
ir
::
Node
*>
visited
;
std
::
vector
<
ir
::
Node
*>
ret
;
for
(
auto
adj
:
adj_list
)
{
if
(
visited
.
find
(
adj
.
first
)
==
visited
.
end
())
{
SortHelper
(
adj_list
,
adj
.
first
,
&
visited
,
&
ret
);
}
}
return
ret
;
}
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
BuildOperationAdjList
(
const
Graph
&
graph
)
{
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
adj_list
;
for
(
auto
&
n
:
graph
.
Nodes
())
{
if
(
n
->
NodeType
()
!=
ir
::
Node
::
Type
::
kOperation
)
continue
;
if
(
adj_list
.
find
(
n
)
==
adj_list
.
end
())
{
adj_list
[
n
]
=
std
::
unordered_set
<
ir
::
Node
*>
();
}
for
(
auto
&
var
:
n
->
inputs
)
{
for
(
auto
&
adj_n
:
var
->
inputs
)
{
PADDLE_ENFORCE
(
adj_n
->
NodeType
()
==
ir
::
Node
::
Type
::
kOperation
);
adj_list
[
n
].
insert
(
adj_n
);
VLOG
(
3
)
<<
"adj "
<<
adj_n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
adj_n
)
<<
" -> "
<<
n
->
Name
()
<<
reinterpret_cast
<
void
*>
(
n
)
<<
" via "
<<
var
->
Name
()
<<
reinterpret_cast
<
void
*>
(
var
);
}
}
}
return
adj_list
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_helper.h
0 → 100644
浏览文件 @
687a3222
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// Test if the graph contains circle.
bool
HasCircle
(
const
Graph
&
graph
);
// Topology Sort the operations in the graph from inputs to outputs.
// `graph` cannot contain circle.
std
::
vector
<
ir
::
Node
*>
TopologySortOperations
(
const
Graph
&
graph
);
// Build an adjacency list of operations for the `graph`.
std
::
map
<
ir
::
Node
*
,
std
::
unordered_set
<
ir
::
Node
*>>
BuildOperationAdjList
(
const
Graph
&
graph
);
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_helper_test.cc
0 → 100644
浏览文件 @
687a3222
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include <string>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
BuildCircleGraph
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
o1
->
outputs
.
push_back
(
v1
);
o1
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o1
);
}
void
BuildCircleGraph2
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o2
=
g
->
CreateEmptyNode
(
"op2"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v2
=
g
->
CreateEmptyNode
(
"var2"
,
Node
::
Type
::
kVariable
);
o1
->
outputs
.
push_back
(
v1
);
o2
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o2
);
o2
->
outputs
.
push_back
(
v2
);
o1
->
inputs
.
push_back
(
v2
);
v2
->
inputs
.
push_back
(
o2
);
v2
->
outputs
.
push_back
(
o1
);
}
void
BuildNoCircleGraph
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o2
=
g
->
CreateEmptyNode
(
"op2"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o3
=
g
->
CreateEmptyNode
(
"op3"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o4
=
g
->
CreateEmptyNode
(
"op4"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o5
=
g
->
CreateEmptyNode
(
"op5"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v2
=
g
->
CreateEmptyNode
(
"var2"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v3
=
g
->
CreateEmptyNode
(
"var3"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v4
=
g
->
CreateEmptyNode
(
"var4"
,
Node
::
Type
::
kVariable
);
// o1->v1->o2
o1
->
outputs
.
push_back
(
v1
);
o2
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o2
);
// o2->v2->o3
// o2->v2->o4
o2
->
outputs
.
push_back
(
v2
);
o3
->
inputs
.
push_back
(
v2
);
o4
->
inputs
.
push_back
(
v2
);
v2
->
inputs
.
push_back
(
o2
);
v2
->
outputs
.
push_back
(
o3
);
v2
->
outputs
.
push_back
(
o4
);
// o2->v3->o5
o2
->
outputs
.
push_back
(
v3
);
o5
->
inputs
.
push_back
(
v3
);
v3
->
inputs
.
push_back
(
o2
);
v3
->
outputs
.
push_back
(
o5
);
// o3-v4->o5
o3
->
outputs
.
push_back
(
v4
);
o5
->
inputs
.
push_back
(
v4
);
v4
->
inputs
.
push_back
(
o3
);
v4
->
outputs
.
push_back
(
o5
);
}
TEST
(
GraphHelperTest
,
Basic
)
{
ProgramDesc
prog
;
Graph
g
(
prog
);
BuildCircleGraph
(
&
g
);
ASSERT_TRUE
(
HasCircle
(
g
));
Graph
g2
(
prog
);
BuildCircleGraph2
(
&
g2
);
ASSERT_TRUE
(
HasCircle
(
g2
));
auto
adj_list
=
BuildOperationAdjList
(
g2
);
for
(
auto
&
adj
:
adj_list
)
{
auto
&
adj_set
=
adj
.
second
;
if
(
adj
.
first
->
Name
()
==
"op1"
)
{
ASSERT_EQ
((
*
adj_set
.
begin
())
->
Name
(),
"op2"
);
}
else
if
(
adj
.
first
->
Name
()
==
"op2"
)
{
ASSERT_EQ
((
*
adj_set
.
begin
())
->
Name
(),
"op1"
);
}
else
{
ASSERT_TRUE
(
false
);
}
}
Graph
g3
(
prog
);
BuildNoCircleGraph
(
&
g3
);
ASSERT_FALSE
(
HasCircle
(
g3
));
auto
sorted
=
TopologySortOperations
(
g3
);
std
::
map
<
std
::
string
,
size_t
>
node_map
;
for
(
size_t
i
=
0
;
i
<
sorted
.
size
();
++
i
)
{
node_map
[
sorted
[
i
]
->
Name
()]
=
i
;
}
ASSERT_EQ
(
node_map
.
at
(
"op1"
),
0
);
ASSERT_EQ
(
node_map
.
at
(
"op2"
),
1
);
ASSERT_TRUE
(
node_map
.
at
(
"op3"
)
<
node_map
.
at
(
"op5"
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
687a3222
...
...
@@ -76,6 +76,7 @@ TEST(GraphTest, Basic) {
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"test_a"
,
"test_b"
,
"test_c"
});
op
->
SetOutput
(
"Out"
,
{
"test_out"
});
op
->
SetAttr
(
"op_role"
,
1
);
prog
.
MutableBlock
(
0
)
->
Var
(
"test_a"
)
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
prog
.
MutableBlock
(
0
)
->
Var
(
"test_b"
)
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
...
...
@@ -92,21 +93,22 @@ TEST(GraphTest, Basic) {
ASSERT_EQ
(
proto
::
VarType
::
LOD_TENSOR
,
prog
.
MutableBlock
(
0
)
->
Var
(
"test_out"
)
->
GetType
());
std
::
unique_ptr
<
Graph
>
g
(
new
Graph
(
prog
));
ASSERT_EQ
(
g
->
nodes
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
inputs
[
0
]
->
Name
(),
"test_a"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
inputs
[
1
]
->
Name
(),
"test_b"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
inputs
[
2
]
->
Name
(),
"test_c"
);
ASSERT_EQ
(
g
->
nodes
[
0
]
->
outputs
[
0
]
->
Name
(),
"test_out"
);
ASSERT_EQ
(
g
->
nodes
[
1
]
->
Name
(),
"test_a"
);
ASSERT_EQ
(
g
->
nodes
[
1
]
->
outputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
2
]
->
Name
(),
"test_b"
);
ASSERT_EQ
(
g
->
nodes
[
2
]
->
outputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
3
]
->
Name
(),
"test_c"
);
ASSERT_EQ
(
g
->
nodes
[
3
]
->
outputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
[
4
]
->
Name
(),
"test_out"
);
ASSERT_EQ
(
g
->
nodes
[
4
]
->
inputs
[
0
]
->
Name
(),
"sum"
);
ASSERT_EQ
(
g
->
nodes
.
size
(),
5
);
std
::
unique_ptr
<
ir
::
Graph
>
g
(
new
ir
::
Graph
(
prog
));
std
::
vector
<
ir
::
Node
*>
nodes
(
g
->
Nodes
().
begin
(),
g
->
Nodes
().
end
());
for
(
ir
::
Node
*
n
:
nodes
)
{
if
(
n
->
Name
()
==
"sum"
)
{
ASSERT_EQ
(
n
->
inputs
.
size
(),
3
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
1
);
}
else
if
(
n
->
Name
()
==
"test_a"
||
n
->
Name
()
==
"test_b"
||
n
->
Name
()
==
"test_c"
)
{
ASSERT_EQ
(
n
->
inputs
.
size
(),
0
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
1
);
}
else
if
(
n
->
Name
()
==
"test_out"
)
{
ASSERT_EQ
(
n
->
inputs
.
size
(),
1
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
0
);
}
}
ASSERT_EQ
(
nodes
.
size
(),
5
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/node.cc
浏览文件 @
687a3222
...
...
@@ -15,5 +15,9 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{}
// namespace framework
namespace
framework
{
namespace
ir
{
const
char
Node
::
kControlDepVarName
[]
=
"__control_var"
;
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/node.h
浏览文件 @
687a3222
...
...
@@ -27,6 +27,8 @@ namespace ir {
class
Node
{
public:
enum
class
Type
{
kOperation
,
kVariable
};
static
const
char
kControlDepVarName
[];
explicit
Node
(
const
std
::
string
&
name
,
Type
type
)
:
name_
(
name
),
var_desc_
(
nullptr
),
op_desc_
(
nullptr
),
type_
(
type
)
{}
...
...
@@ -50,6 +52,7 @@ class Node {
PADDLE_ENFORCE
(
type_
==
Type
::
kVariable
);
return
var_desc_
;
}
OpDesc
*
Op
()
{
PADDLE_ENFORCE
(
type_
==
Type
::
kOperation
);
return
op_desc_
;
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
687a3222
...
...
@@ -132,7 +132,7 @@ ParallelExecutor::ParallelExecutor(
#endif
}
builder_
=
builder_factory
.
Create
();
std
::
unique_ptr
<
Graph
>
graph
(
new
Graph
(
main_program
));
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
main_program
));
graph
=
builder_
->
Apply
(
std
::
move
(
graph
));
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
...
...
paddle/fluid/inference/api/demo_ci/clean.sh
0 → 100755
浏览文件 @
687a3222
set
-x
cd
`
dirname
$0
`
rm
-rf
build/ data/
set
+x
paddle/fluid/memory/detail/buddy_allocator.cc
浏览文件 @
687a3222
...
...
@@ -15,6 +15,10 @@ limitations under the License. */
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
DEFINE_bool
(
free_idle_memory
,
false
,
"If it is true, Paddle will try to free idle memory trunks during "
"running time."
);
namespace
paddle
{
namespace
memory
{
namespace
detail
{
...
...
@@ -152,13 +156,14 @@ void BuddyAllocator::Free(void* p) {
pool_
.
insert
(
IndexSizeAddress
(
block
->
index
(
cache_
),
block
->
total_size
(
cache_
),
block
));
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc
();
if
(
FLAGS_free_idle_memory
)
{
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc
();
// Free normal allocation
CleanIdleNormalAlloc
();
// Free normal allocation
CleanIdleNormalAlloc
();
}
}
size_t
BuddyAllocator
::
Used
()
{
return
total_used_
;
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
687a3222
...
...
@@ -192,9 +192,9 @@ if(WITH_DISTRIBUTE)
set
(
DISTRIBUTE_DEPS
""
)
if
(
WITH_GRPC
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf
node
)
else
()
set
(
DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib
)
set
(
DISTRIBUTE_DEPS sendrecvop_brpc brpc leveldb snappystream snappy protobuf ssl crypto zlib
node
)
if
(
WITH_BRPC_RDMA
)
find_library
(
IBVERBS_LIBRARY NAMES ibverbs
)
ADD_LIBRARY
(
ibverbs SHARED IMPORTED GLOBAL
)
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
687a3222
...
...
@@ -77,7 +77,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// cudnn 7 can support groups, no need to do it mannually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
cudnn_conv_desc
,
groups
));
groups
=
1
;
#endif
...
...
@@ -129,7 +129,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
algo
));
...
...
@@ -140,18 +140,18 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
if
(
dev_ctx
.
GetComputeCapability
()
>=
70
&&
std
::
type_index
(
typeid
(
T
))
==
std
::
type_index
(
typeid
(
platform
::
float16
)))
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_TENSOR_OP_MATH
));
// Currently tensor core is only enabled using this algo
algo
=
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
;
}
else
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_DEFAULT_MATH
));
}
#endif
// get workspace size able to allocate
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
// It is possible for float16 on Volta GPU to allocate more memory than
...
...
@@ -165,7 +165,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv forward ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
...
...
@@ -218,7 +218,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// cudnn 7 can support groups, no need to do it mannually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
cudnn_conv_desc
,
groups
));
groups
=
1
;
#endif
...
...
@@ -273,7 +273,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
auto
handle
=
dev_ctx
.
cudnn_handle
();
if
(
input_grad
)
{
if
(
FLAGS_cudnn_deterministic
)
{
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
handle
,
cudnn_filter_desc
,
// dyDesc: Handle to the previously initialized input
...
...
@@ -289,7 +289,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
data_algo
=
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
;
}
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataWorkspaceSize
(
handle
,
cudnn_filter_desc
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
cudnn_input_desc
,
data_algo
,
&
tmp_size
));
...
...
@@ -298,7 +298,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
if
(
filter_grad
)
{
if
(
FLAGS_cudnn_deterministic
)
{
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
...
...
@@ -308,7 +308,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
filter_algo
=
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1
;
}
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterWorkspaceSize
(
handle
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
filter_algo
,
&
tmp_size
));
...
...
@@ -326,7 +326,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
data_algo
,
...
...
@@ -339,7 +339,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset filter_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
...
...
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
687a3222
...
...
@@ -87,7 +87,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
// Get the algorithm
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
handle
,
cudnn_filter_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
// dxDesc: Handle to the previously initialized output tensor
// descriptor.
...
...
@@ -95,7 +95,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
workspace_size_limit
,
&
algo
));
// get workspace size able to allocate
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataWorkspaceSize
(
handle
,
cudnn_filter_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
...
...
@@ -110,7 +110,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
...
...
@@ -178,11 +178,11 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
auto
handle
=
dev_ctx
.
cudnn_handle
();
if
(
input_grad
)
{
// choose backward algorithm for data
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
handle
,
cudnn_output_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_input_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
data_algo
));
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
handle
,
cudnn_output_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_input_desc
,
data_algo
,
&
fwd_ws_size
));
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
fwd_ws_size
);
...
...
@@ -190,7 +190,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
if
(
filter_grad
)
{
// choose backward algorithm for filter
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
handle
,
cudnn_output_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
...
...
@@ -198,7 +198,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
workspace_size_limit
,
&
filter_algo
));
// get workspace for backwards filter algorithm
PADDLE
_ENFORCE
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterWorkspaceSize
(
handle
,
cudnn_output_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_filter_desc
,
filter_algo
,
&
bwd_filter_ws_size
));
...
...
@@ -222,7 +222,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_conv_desc
,
data_algo
,
...
...
@@ -237,7 +237,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset filter_grad.
// Gradient with respect to the filter
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
filter_algo
,
...
...
paddle/fluid/operators/math/softmax.cu
浏览文件 @
687a3222
...
...
@@ -52,7 +52,7 @@ void SoftmaxCUDNNFunctor<T>::operator()(
xDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
cudnnTensorDescriptor_t
cudnn_y_desc
=
xDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxForward
(
context
.
cudnn_handle
(),
CUDNN_SOFTMAX_ACCURATE
,
CUDNN_SOFTMAX_MODE_INSTANCE
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_x_desc
,
X
->
data
<
T
>
(),
CudnnDataType
<
T
>::
kZero
(),
cudnn_y_desc
,
...
...
@@ -83,7 +83,7 @@ void SoftmaxGradCUDNNFunctor<T>::operator()(
dxDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
cudnnTensorDescriptor_t
cudnn_ygrad_desc
=
dyDesc
.
descriptor
<
T
>
(
layout
,
cudnn_tensor_dims
);
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxBackward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnSoftmaxBackward
(
context
.
cudnn_handle
(),
CUDNN_SOFTMAX_ACCURATE
,
CUDNN_SOFTMAX_MODE_INSTANCE
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_y_desc
,
Y
->
data
<
T
>
(),
cudnn_ygrad_desc
,
YGrad
->
data
<
T
>
(),
...
...
paddle/fluid/operators/pool_cudnn_op.cu.cc
浏览文件 @
687a3222
...
...
@@ -81,7 +81,7 @@ class PoolCUDNNOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn pool algorithm ---------------------
auto
handle
=
ctx
.
cuda_device_context
().
cudnn_handle
();
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingForward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingForward
(
handle
,
cudnn_pool_desc
,
&
alpha
,
cudnn_input_desc
,
input_data
,
&
beta
,
cudnn_output_desc
,
output_data
));
}
...
...
@@ -154,7 +154,7 @@ class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
PADDLE
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingBackward
(
CUDNN
_ENFORCE
(
platform
::
dynload
::
cudnnPoolingBackward
(
handle
,
cudnn_pool_desc
,
&
alpha
,
cudnn_output_desc
,
output_data
,
cudnn_output_desc
,
output_grad_data
,
cudnn_input_desc
,
input_data
,
&
beta
,
cudnn_input_desc
,
input_grad_data
));
...
...
paddle/fluid/operators/send_recv_util.h
浏览文件 @
687a3222
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,7 +23,10 @@ inline bool NeedSend(const framework::Scope& scope,
const
std
::
string
&
varname
)
{
// dummy variable is only used in parallel executor to represent
// some dependency relationship, we don't need to send/recv it.
if
(
varname
==
"dummy"
)
return
false
;
// TODO(paddle-dev): Why would parallel executor logic leaked into here?
if
(
varname
.
find
(
framework
::
ir
::
Node
::
kControlDepVarName
)
!=
std
::
string
::
npos
)
return
false
;
auto
*
var
=
scope
.
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Can not find variable '%s' in the send side."
,
varname
);
...
...
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
687a3222
...
...
@@ -59,13 +59,12 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
#define CUDNN_VERSION_MIN(major, minor, patch) \
(CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (status != CUDNN_STATUS_SUCCESS) { \
VLOG(1) << ::paddle::platform::cudnnGetErrorString(status); \
PADDLE_THROW("cuDNN call failed"); \
} \
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) { \
PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
} \
} while (false)
enum
class
DataLayout
{
// Not use
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
687a3222
...
...
@@ -547,6 +547,7 @@ function test_fluid_inference_lib() {
EOF
cd
${
PADDLE_ROOT
}
/paddle/fluid/inference/api/demo_ci
./run.sh
${
PADDLE_ROOT
}
${
WITH_MKL
:-
ON
}
${
WITH_GPU
:-
OFF
}
./clean.sh
fi
}
...
...
python/paddle/fluid/__init__.py
浏览文件 @
687a3222
...
...
@@ -62,33 +62,33 @@ from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
concurrency
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
lod_tensor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'contrib'
,
'transpiler'
,
'nets'
,
'optimizer'
,
'learning_rate_decay'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'LoDTensorArray'
,
'CPUPlace'
,
'CUDAPlace'
,
'CUDAPinnedPlace'
,
'Tensor'
,
'ParamAttr'
,
'WeightNormParamAttr'
,
'DataFeeder'
,
'clip'
,
'profiler'
,
'unique_name'
,
'recordio_writer'
,
'Scope'
,
]
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
lod_tensor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'contrib'
,
'transpiler'
,
'nets'
,
'optimizer'
,
'learning_rate_decay'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'LoDTensorArray'
,
'CPUPlace'
,
'CUDAPlace'
,
'CUDAPinnedPlace'
,
'Tensor'
,
'ParamAttr'
,
'WeightNormParamAttr'
,
'DataFeeder'
,
'clip'
,
'profiler'
,
'unique_name'
,
'recordio_writer'
,
'Scope'
,
]
def
__bootstrap__
():
...
...
@@ -123,7 +123,7 @@ def __bootstrap__():
read_env_flags
=
[
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
'init_allocated_mem'
,
'free_idle_memory'
]
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/framework.py
浏览文件 @
687a3222
...
...
@@ -1540,7 +1540,12 @@ class Program(object):
def
inference_optimize
(
self
):
"""
This method will create a new program and change the :code:`is_test`
This method will create a new program and do following adjustments on it:
1. Remove all reader variables and their creator ops if exist.
2. Remove the :code:`read_op` if exists.
3. change the :code:`is_test`
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
...
...
@@ -1554,6 +1559,22 @@ class Program(object):
# core.inference_optimize being fixed.
res
=
Program
()
res
.
desc
=
core
.
ProgramDesc
(
self
.
desc
)
# remove all readers and the read_op if exist
read_op_idx
=
0
root_block
=
res
.
desc
.
block
(
0
)
while
True
:
if
read_op_idx
>=
root_block
.
op_size
()
or
root_block
.
op
(
read_op_idx
).
type
()
==
'read'
:
break
read_op_idx
+=
1
if
read_op_idx
<
root_block
.
op_size
():
root_block
.
_remove_op
(
0
,
read_op_idx
+
1
)
for
var
in
root_block
.
all_vars
():
if
var
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
root_block
.
_remove_var
(
var
.
name
())
# change all `is_test` attributes to True
for
i
in
xrange
(
res
.
desc
.
num_blocks
()):
block
=
res
.
desc
.
block
(
i
)
for
j
in
xrange
(
block
.
op_size
()):
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
687a3222
...
...
@@ -443,9 +443,6 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
if
for_parallel
:
main_prog_var
=
parallel
(
reader
=
main_prog_var
)
return
monkey_patch_reader_methods
(
main_prog_var
)
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
687a3222
...
...
@@ -779,7 +779,9 @@ class DistributeTranspiler(object):
outputs
=
{
"Out"
:
prefetch_output_vars
},
attrs
=
{
"epmap"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
# FIXME(qiao) temporarily disable this config because prefetch
# is not act as other rpc op, it's more like a forward op
# RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
# insert concat_op
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录