Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
67eff9fa
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
67eff9fa
编写于
8月 31, 2017
作者:
H
Helin Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish
上级
c2a16b5c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
8 addition
and
5 deletion
+8
-5
doc/design/ops/dist_train.md
doc/design/ops/dist_train.md
+8
-5
未找到文件。
doc/design/ops/dist_train.md
浏览文件 @
67eff9fa
...
...
@@ -65,7 +65,8 @@ After converting:
-
Model parallelism become easier to implement: it's an extension to
the trainer - parameter server approach. we already have the
communication OPs, but need to extend the graph converter.
communication OPs, but need to extend the graph converter's
placement functionality.
-
User-defined optimizer is easier to add - user can now express it as
a subgraph.
...
...
@@ -90,14 +91,16 @@ After converting:
-
In the "Aync SGD" figure, the "W" variable on the parameter server
could be read and wrote concurrently, what is our locking strategy?
E.g., each variable have a lock cpp method to be invoked by every
OP, or, have a lock OP.
-
Does our current tensor design supports enqueue (put the input tensor
into the queue tensor)?
-
Can the Enqueue OP be implemented under our current tensor design
(puts the input tensor
into the queue tensor)?
-
*Dequeue*
OP will have variable numbers of output (depends on the
`min_count`
attribute), does our current design support it? (similar
question for the
*Add*
OP)
References:
[1]
(TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems)[https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf]
###
References:
[
1]
[TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
](
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录