Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
65541d83
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
65541d83
编写于
5月 08, 2019
作者:
Z
Zhen Wang
提交者:
GitHub
5月 08, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add scale pass for calculating the output scales.test=develop (#17259)
上级
8f534696
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
346 addition
and
1 deletion
+346
-1
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+156
-1
python/paddle/fluid/contrib/slim/tests/test_quantization_scale_pass.py
.../fluid/contrib/slim/tests/test_quantization_scale_pass.py
+190
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
65541d83
...
...
@@ -22,7 +22,7 @@ from .... import unique_name
__all__
=
[
'QuantizationTransformPass'
,
'QuantizationFreezePass'
,
'ConvertToInt8Pass'
,
'TransformForMobilePass'
'TransformForMobilePass'
,
'ScaleForTrainingPass'
,
'ScaleForInferencePass'
]
...
...
@@ -962,3 +962,158 @@ class TransformForMobilePass(object):
graph
.
safe_remove_nodes
(
op_node
)
graph
.
resolve_hazard
()
return
graph
class
ScaleForTrainingPass
(
object
):
def
__init__
(
self
,
scope
=
None
,
place
=
None
,
moving_rate
=
0.9
):
"""
This pass is used for calculating output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
"""
self
.
_scope
=
scope
self
.
_place
=
place
self
.
_moving_rate
=
moving_rate
self
.
_is_test
=
None
self
.
_teller_set
=
[
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"elementwise_mul"
,
"dropout"
,
"split"
,
"prelu"
,
"conv2d_transpose"
,
"leaky_relu"
]
def
apply
(
self
,
graph
):
"""
Insert the `moving_average_abs_max_scale` op in order to calculate output scales
of operators in the teller_set.
Args:
graph(IrGraph): the target graph.
"""
self
.
_is_test
=
graph
.
is_test
()
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
name
=
op_node
.
name
()
if
name
in
self
.
_teller_set
:
if
len
(
op_node
.
output_arg_names
())
!=
1
:
continue
in_node
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output_arg_names
()[
0
])
out_node
=
graph
.
create_var_node_from_desc
(
in_node
.
var
())
scale_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
in_node
.
name
()),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
in_node
.
dtype
())
ins
=
{
'X'
:
in_node
}
outs
=
{
'Out'
:
out_node
,
'OutScale'
:
scale_node
}
if
not
self
.
_is_test
:
state_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'scale_state@'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
in_node
.
dtype
(),
shape
=
[
1
])
data_type
=
'float64'
if
in_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
_init_var_node
(
state_in_node
,
np
.
ones
(
[
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
accum_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'scale_accum@'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
in_node
.
dtype
(),
shape
=
[
1
])
_init_var_node
(
accum_in_node
,
np
.
ones
(
[
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
state_out_node
=
graph
.
create_var_node_from_desc
(
state_in_node
.
var
())
accum_out_node
=
graph
.
create_var_node_from_desc
(
accum_in_node
.
var
())
ins
[
'InState'
]
=
state_in_node
ins
[
'InAccum'
]
=
accum_in_node
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
attrs
=
{
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
scale_op_node
=
graph
.
create_op_node
(
op_type
=
'moving_average_abs_max_scale'
,
attrs
=
attrs
,
inputs
=
ins
,
outputs
=
outs
)
graph
.
link_to
(
in_node
,
scale_op_node
)
graph
.
link_to
(
scale_op_node
,
out_node
)
graph
.
link_to
(
scale_op_node
,
scale_node
)
if
not
self
.
_is_test
:
graph
.
link_to
(
state_in_node
,
scale_op_node
)
graph
.
link_to
(
accum_in_node
,
scale_op_node
)
graph
.
link_to
(
scale_op_node
,
state_out_node
)
graph
.
link_to
(
scale_op_node
,
accum_out_node
)
graph
.
resolve_hazard
()
return
graph
def
_scale_name
(
self
,
var_name
):
"""
Return the scale name for the var named `var_name`.
"""
return
"%s@scale"
%
(
var_name
)
class
ScaleForInferencePass
(
object
):
def
__init__
(
self
,
scope
=
None
):
"""
This pass is used for setting output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
"""
self
.
_scope
=
scope
self
.
_teller_set
=
[
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"elementwise_mul"
,
"dropout"
,
"split"
,
"prelu"
,
"conv2d_transpose"
,
"leaky_relu"
]
def
apply
(
self
,
graph
):
"""
Get output scales from the scope and set these scales in op_descs
of operators in the teller_set.
Args:
graph(IrGraph): the target graph.
"""
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
name
=
op_node
.
name
()
if
name
in
self
.
_teller_set
:
if
len
(
op_node
.
output_arg_names
())
!=
1
:
continue
scale_name
=
self
.
_scale_name
(
op_node
.
output_arg_names
()[
0
])
scale_v
=
np
.
array
(
self
.
_scope
.
find_var
(
scale_name
).
get_tensor
())[
0
]
op_node
.
op
().
_set_attr
(
"out_scale"
,
float
(
scale_v
))
graph
.
resolve_hazard
()
return
graph
def
_scale_name
(
self
,
var_name
):
"""
Return the scale name for the var named `var_name`.
"""
return
"%s@scale"
%
(
var_name
)
python/paddle/fluid/contrib/slim/tests/test_quantization_scale_pass.py
0 → 100644
浏览文件 @
65541d83
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
os
import
unittest
import
random
import
numpy
as
np
import
six
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid.contrib.slim.quantization
import
QuantizationFreezePass
from
paddle.fluid.contrib.slim.quantization
import
ScaleForTrainingPass
from
paddle.fluid.contrib.slim.quantization
import
ScaleForInferencePass
from
paddle.fluid
import
core
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
"0"
os
.
environ
[
"CPU_NUM"
]
=
"1"
def
residual_block
(
img
,
label
,
num
=
1
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
hidden
=
img
for
_
in
six
.
moves
.
xrange
(
num
):
conv
=
conv_bn_layer
(
hidden
,
20
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
20
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestQuantizationScalePass
(
unittest
.
TestCase
):
def
quantization_scale
(
self
,
use_cuda
,
seed
,
activation_quant_type
,
weight_quant_type
=
'abs_max'
,
for_ci
=
False
):
def
build_program
(
main
,
startup
,
is_test
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
residual_block
(
img
,
label
,
1
)
if
not
is_test
:
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.0001
)
opt
.
minimize
(
loss
)
return
[
img
,
label
],
loss
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
feeds
,
loss
=
build_program
(
main
,
startup
,
False
)
build_program
(
test_program
,
startup
,
True
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
main_graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
test_graph
=
IrGraph
(
core
.
Graph
(
test_program
.
desc
),
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
startup
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
)
transform_pass
.
apply
(
main_graph
)
transform_pass
.
apply
(
test_graph
)
scale_training_pass
=
ScaleForTrainingPass
(
scope
=
scope
,
place
=
place
)
scale_training_pass
.
apply
(
main_graph
)
dev_name
=
'_gpu'
if
use_cuda
else
'_cpu'
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
main_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
main_graph
.
draw
(
'.'
,
'main_scale'
+
dev_name
,
marked_nodes
)
marked_nodes
=
set
()
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_scale'
+
dev_name
,
marked_nodes
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_inplace
=
False
binary
=
fluid
.
CompiledProgram
(
main_graph
.
graph
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
iters
=
5
batch_size
=
8
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
with
fluid
.
scope_guard
(
scope
):
for
_
in
range
(
iters
):
data
=
next
(
train_reader
())
loss_v
=
exe
.
run
(
binary
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'loss'
+
dev_name
,
loss_v
))
scale_inference_pass
=
ScaleForInferencePass
(
scope
=
scope
)
scale_inference_pass
.
apply
(
test_graph
)
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
server_program
=
test_graph
.
to_program
()
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'quant_scale'
+
dev_name
,
marked_nodes
)
with
open
(
'quant_scale_model'
+
dev_name
+
'.txt'
,
'w'
)
as
f
:
f
.
write
(
str
(
server_program
))
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
'quant_scale_model'
+
dev_name
,
[
'image'
,
'label'
],
[
loss
],
exe
,
server_program
)
def
test_quant_scale_cuda
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
quantization_scale
(
True
,
seed
=
1
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_quant_scale_cpu
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
quantization_scale
(
False
,
seed
=
2
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录