提交 632ad5c9 编写于 作者: Q qiaolongfei

support sequence_rnn_multi_input

上级 3d28291d
......@@ -3,9 +3,6 @@ import paddle.v2 as paddle
import mnist_util
import pudb
pudb.set_trace()
def train_reader():
train_file = './data/raw_data/train'
......
......@@ -3474,6 +3474,8 @@ def update_g_config():
for name in g_config.model_config.output_layer_names:
assert name in g_layer_map, \
'input name "%s" does not correspond to a layer name' % name
for hook in _parse_config_hooks:
hook()
return g_config
......@@ -3485,8 +3487,8 @@ def parse_config(trainer_config, config_arg_str):
passed to config script as a dictionary CONFIG_ARGS
'''
init_config_environment()
for hook in _parse_config_hooks:
hook()
# for hook in _parse_config_hooks:
# hook()
config_args = {}
......
......@@ -124,11 +124,13 @@ class Layer(object):
return self.to_proto_impl(**kwargs)
# memory may have the same name with some layer
if isinstance(self, MemoryV2) or isinstance(self, LayerOutputV2):
if isinstance(self, MemoryV2):
return self.to_proto_impl(**kwargs)
# store v1 API's layer_output in context with the key of it's name.
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
......@@ -200,8 +202,19 @@ class MemoryV2(Layer):
def __init__(self, name, size, **kwargs):
self.name = name
self.size = size
self.__kwargs__ = kwargs
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
parent_names = ['boot_layer']
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(MemoryV2, self).__init__(name=name, parent_layers=parent_layers)
self.__kwargs__ = other_kwargs
def to_proto_impl(self, **kwargs):
args = dict()
......@@ -209,10 +222,16 @@ class MemoryV2(Layer):
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return conf_helps.memory(name=self.name, size=self.size, **args)
class LayerOutputV2(Layer):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def __init__(self, layer_output):
assert isinstance(layer_output, conf_helps.LayerOutput)
self.layer_output = layer_output
......@@ -239,8 +258,11 @@ class RecurrentGroupV2(Layer):
super(RecurrentGroupV2, self).__init__(
name=name, parent_layers=parent_layers)
wrapper = wrap_name_default(name_prefix='recurrent_group')
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
def in_args_converter(in_args):
def in_args_converter(*in_args):
if not isinstance(in_args, collections.Sequence):
in_args = [in_args]
return [LayerOutputV2(input) for input in in_args]
......
add_test(NAME test_v2_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py)
add_test(NAME test_v2_rnn_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_rnn_layer.py)
......@@ -11,16 +11,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import difflib
import unittest
import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation
import paddle.v2.attr as attr
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
......@@ -57,51 +53,5 @@ class CostLayerTest(unittest.TestCase):
print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
class RNNTest(unittest.TestCase):
def test_simple_rnn(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
def parse_old_rnn():
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
def test():
data1 = conf_helps.data_layer(name="word", size=dict_dim)
embd = conf_helps.embedding_layer(input=data1, size=word_dim)
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
return str(parse_network(test))
def parse_new_rnn():
def new_step(y):
mem = layer.memory(name="rnn_state", size=hidden_dim)
out = layer.fc(input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
data1 = layer.data(
name="word", type=data_type.integer_value(dict_dim))
embd = layer.embedding(input=data1, size=word_dim)
rnn_layer = layer.recurrent_group(
name="rnn", step=new_step, input=embd)
return str(layer.parse_network(rnn_layer))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
if __name__ == '__main__':
unittest.main()
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import difflib
import unittest
import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network
class RNNTest(unittest.TestCase):
def test_simple_rnn(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
def parse_old_rnn():
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
embd = conf_helps.embedding_layer(input=data, size=word_dim)
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
return str(parse_network(test))
def parse_new_rnn():
def new_step(y):
mem = layer.memory(name="rnn_state", size=hidden_dim)
out = layer.fc(input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
data = layer.data(
name="word", type=data_type.integer_value(dict_dim))
embd = layer.embedding(input=data, size=word_dim)
rnn_layer = layer.recurrent_group(
name="rnn", step=new_step, input=embd)
return str(layer.parse_network(rnn_layer))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
def test_sequence_rnn_multi_input(self):
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 3
def parse_old_rnn():
def step(y, wid):
z = conf_helps.embedding_layer(input=wid, size=word_dim)
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, z, mem],
size=hidden_dim,
act=conf_helps.TanhActivation(),
bias_attr=True,
name="rnn_state")
return out
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
label = conf_helps.data_layer(name="label", size=label_dim)
emb = conf_helps.embedding_layer(input=data, size=word_dim)
out = conf_helps.recurrent_group(
name="rnn", step=step, input=[emb, data])
rep = conf_helps.last_seq(input=out)
prob = conf_helps.fc_layer(
size=label_dim,
input=rep,
act=conf_helps.SoftmaxActivation(),
bias_attr=True)
conf_helps.outputs(
conf_helps.classification_cost(
input=prob, label=label))
return str(parse_network(test))
def parse_new_rnn():
def step(y, wid):
z = layer.embedding(input=wid, size=word_dim)
mem = layer.memory(name="rnn_state", size=hidden_dim)
out = layer.fc(input=[y, z, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
data = layer.data(
name="word", type=data_type.dense_vector(dict_dim))
label = layer.data(
name="label", type=data_type.dense_vector(label_dim))
emb = layer.embedding(input=data, size=word_dim)
out = layer.recurrent_group(
name="rnn", step=step, input=[emb, data])
rep = layer.last_seq(input=out)
prob = layer.fc(size=label_dim,
input=rep,
act=activation.Softmax(),
bias_attr=True)
cost = layer.classification_cost(input=prob, label=label)
return str(layer.parse_network(cost))
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
parse_new_rnn().splitlines(1))
print ''.join(diff)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册