提交 630f58c8 编写于 作者: Q qingqing01 提交者: GitHub

Update PaddleDetection/README_cn.md (#3689)

* Update PaddleDetection/README_cn.md
* Follow comments
* Small update
上级 8df4860d
......@@ -2,7 +2,7 @@
# PaddleDetection
PaddleDetection的目的是为工业界和学术界提供大量易使用的目标检测模型。PaddleDetection不仅性能完善,易于部署,同时能够灵活的满足算法研发需求。
PaddleDetection的目的是为工业界和学术界提供丰富、易用的目标检测模型。不仅性能优越、易于部署,而且能够灵活的满足算法研究的需求。
<div align="center">
<img src="demo/output/000000570688.jpg" />
......@@ -15,15 +15,15 @@ PaddleDetection的目的是为工业界和学术界提供大量易使用的目
- 易部署:
PaddleDetection的模型中使用的主要算子均通过C++和CUDA实现,配合PaddlePaddle的高性能预测引擎,使得在服务器环境下易于部署
PaddleDetection的模型中使用的核心算子均通过C++或CUDA实现,同时基于PaddlePaddle的高性能推理引擎可以方便地部署在多种硬件平台上
- 高灵活度:
PaddleDetection各个组件均为功能单元。例如,模型结构,数据预处理流程,用户能够通过修改配置文件轻松实现可定制化
PaddleDetection通过模块化设计来解耦各个组件,基于配置文件可以轻松地搭建各种检测模型
- 高性能:
在PaddlePaddle底层框架的帮助下,实现了更快的模型训练及更少的显存占用量。值得注意的是,Yolo v3的训练速度远快于其他框架。另外,Mask-RCNN(ResNet50)可以在Tesla V100 16GB环境下以每个GPU4张图片输入实现多卡训练
基于PaddlePaddle框架的高性能内核,在模型训练速度、显存占用上有一定的优势。例如,YOLOv3的训练速度快于其他框架,在Tesla V100 16GB环境下,Mask-RCNN(ResNet50)可以单卡Batch Size可以达到4 (甚至到5)
支持的模型结构:
......@@ -33,75 +33,88 @@ PaddleDetection的目的是为工业界和学术界提供大量易使用的目
| Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Cascade R-CNN | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| Yolov3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ |
| Cascade Faster-CNN | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
| Cascade Mask-CNN | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
| YOLOv3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) 模型提供了较大的精度提高和较少的性能损失。
扩展特性:
- [x] **Synchronized Batch Norm**: 目前在Yolo v3中使用。
- [x] **Group Norm**: 预训练模型待发布。
- [x] **Modulated Deformable Convolution**: 预训练模型待发布。
- [x] **Deformable PSRoI Pooling**: 预训练模型待发布。
- [x] **Synchronized Batch Norm**: 目前在YOLOv3中使用。
- [x] **Group Norm**
- [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**
**注意:** Synchronized batch normalization 只能在多GPU环境下使用,不能在CPU环境或者单GPU环境下使用。
## 模型库
基于PaddlePaddle训练的目标检测模型可参考[PaddleDetection模型库](docs/MODEL_ZOO_cn.md).
## 使用教程
## 安装
- [安装说明](docs/INSTALL_cn.md)
- [快速开始](docs/QUICK_STARTED_cn.md)
- [训练、评估及参数说明](docs/GETTING_STARTED_cn.md)
- [数据预处理及自定义数据集](docs/DATA_cn.md)
- [配置模块设计和介绍](docs/CONFIG_cn.md)
- [详细的配置信息和参数说明示例](docs/config_example/)
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [迁移学习教程](docs/TRANSFER_LEARNING_cn.md)
请参考[安装说明文档](docs/INSTALL_cn.md).
## 模型库
- [模型库](docs/MODEL_ZOO_cn.md)
- [人脸检测模型](configs/face_detection/README_cn.md)
- [行人检测和车辆检测预训练模型](contrib/README_cn.md)
## 开始
## 快速入门
## 模型压缩
- [量化训练压缩示例](slim/quantization)
- [剪枝压缩示例](slim/prune)
PaddleDetection提供了快速开始的demo利于用户能够快速上手,示例请参考[QUICK_STARTED_cn.md](docs/QUICK_STARTED_cn.md)
## 推理部署
更多训练及评估流程,请参考[GETTING_STARTED_cn.md](docs/GETTING_STARTED_cn.md).
- [C++推理部署](inference/README.md)
详细的配置信息和参数说明,请参考[示例配置文件](docs/config_example/).
## Benchmark
同时推荐用户参考[IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [推理Benchmark](docs/BENCHMARK_INFER_cn.md)
其他更多信息可参考以下文档内容:
- [配置流程介绍](docs/CONFIG_cn.md)
- [自定义数据集和预处理流程介绍](docs/DATA_cn.md)
## 版本更新
## 未来规划
### 10/2019
目前PaddleDetection处在持续更新的状态,接下来将会推出一系列的更新,包括如下特性:
- 增加人脸检测模型BlazeFace、Faceboxes。
- 丰富基于COCO的模型,精度高达51.9%。
- 增加Objects365 2019 Challenge上夺冠的最佳单模型之一CACascade-RCNN。
- 增加行人检测和车辆检测预训练模型。
- 支持FP16训练。
- 增加跨平台的C++推理部署方案。
- 增加模型压缩示例。
- [ ] 混合精度训练
- [ ] 分布式训练
- [ ] Int8模式预测
- [ ] 用户自定义算子
- [ ] 进一步丰富模型库
### 2/9/2019
- 增加GroupNorm模型。
- 增加CascadeRCNN+Mask模型。
## 版本更新
#### 5/8/2019
- 增加Modulated Deformable Convolution系列模型。
#### 7/22/2019
- 增加检测库中文文档
- 修复R-CNN系列模型训练同时进行评估的问题
- 新增ResNext101-vd + Mask R-CNN + FPN模型
- 新增基于VOC数据集的Yolo v3模型
- 新增基于VOC数据集的YOLOv3模型
#### 7/3/2019
- 首次发布PaddleDetection检测库和检测模型库
- 模型包括:Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask
R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, Yolo v3, 和SSD.
R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, YOLOv3, 和SSD.
## 如何贡献代码
......
......@@ -156,3 +156,8 @@ results of image size 608/416/320 above.
**NOTE**: MobileNet-SSD is trained in 2 GPU with totoal batch size as 64 and trained 120 epoches. VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 240 epoches. SSD training data augmentations: randomly color distortion,
randomly cropping, randomly expansion, randomly flipping.
## Face Detection
Please refer [face detection models](../configs/face_detection) for details.
......@@ -150,3 +150,7 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
| VGG16 | 512 | 8 | 240e | 65.975 | 80.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
**注意事项:** MobileNet-SSD在2卡,总batch size为64下训练120周期。VGG-SSD在总batch size为32下训练240周期。数据增强包括:随机颜色失真,随机剪裁,随机扩张,随机翻转。
## 人脸检测
详细请参考[人脸检测模型](../configs/face_detection).
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册