Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
624e3e52
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
624e3e52
编写于
12月 19, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add MKL Packed RecurrentLayer
上级
16fd9f18
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
546 addition
and
0 deletion
+546
-0
paddle/gserver/CMakeLists.txt
paddle/gserver/CMakeLists.txt
+10
-0
paddle/gserver/layers/MKLPackedGemm.h
paddle/gserver/layers/MKLPackedGemm.h
+94
-0
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
+311
-0
paddle/gserver/layers/MKLPackedRecurrentLayer.h
paddle/gserver/layers/MKLPackedRecurrentLayer.h
+131
-0
未找到文件。
paddle/gserver/CMakeLists.txt
浏览文件 @
624e3e52
...
...
@@ -34,6 +34,16 @@ else()
message
(
STATUS
"Compile with MKLDNNLayers and MKLDNNActivations"
)
endif
()
if
(
NOT WITH_MKLML
)
file
(
GLOB_RECURSE MKL_HEADER RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"MKLPacked*.h"
)
file
(
GLOB_RECURSE MKL_SOURCES RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"MKLPacked*.cpp"
)
list
(
REMOVE_ITEM GSERVER_HEADER
${
MKL_HEADER
}
)
list
(
REMOVE_ITEM GSERVER_SOURCES
${
MKL_SOURCES
}
)
message
(
STATUS
"Skip compiling with MKLPackedLayers"
)
else
()
message
(
STATUS
"Compile with MKLPackedLayers"
)
endif
()
if
(
NOT WITH_GPU
)
list
(
REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h
...
...
paddle/gserver/layers/MKLPackedGemm.h
0 → 100644
浏览文件 @
624e3e52
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/math/MathFunctions.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
class
MKLPackedGemm
{
protected:
real
*
weightPacked_
;
real
*
weightTPacked_
;
size_t
weightHeight_
;
size_t
weightWidth_
;
public:
MKLPackedGemm
(
MatrixPtr
weight
)
{
weightHeight_
=
weight
->
getHeight
();
weightWidth_
=
weight
->
getWidth
();
weightPacked_
=
cblas_sgemm_alloc
(
CblasBMatrix
,
1
,
weightWidth_
,
weightHeight_
);
weightTPacked_
=
cblas_sgemm_alloc
(
CblasBMatrix
,
1
,
weightWidth_
,
weightHeight_
);
cblas_sgemm_pack
(
CblasRowMajor
,
CblasBMatrix
,
CblasNoTrans
,
1
,
weightWidth_
,
weightHeight_
,
1.0
,
weight
->
getData
(),
weightWidth_
,
weightPacked_
);
cblas_sgemm_pack
(
CblasRowMajor
,
CblasBMatrix
,
CblasTrans
,
1
,
weightWidth_
,
weightHeight_
,
1.0
,
weight
->
getData
(),
weightWidth_
,
weightTPacked_
);
}
void
compute
(
MatrixPtr
batch2
,
MatrixPtr
batch1
,
bool
transW
=
false
)
{
if
(
transW
)
{
cblas_sgemm_compute
(
CblasRowMajor
,
CblasNoTrans
,
CblasPacked
,
batch2
->
getHeight
(),
weightWidth_
,
weightHeight_
,
batch1
->
getData
(),
weightHeight_
,
weightTPacked_
,
weightWidth_
,
1
,
batch2
->
getData
(),
weightWidth_
);
}
else
{
cblas_sgemm_compute
(
CblasRowMajor
,
CblasNoTrans
,
CblasPacked
,
batch2
->
getHeight
(),
weightWidth_
,
weightHeight_
,
batch1
->
getData
(),
weightHeight_
,
weightPacked_
,
weightWidth_
,
1
,
batch2
->
getData
(),
weightWidth_
);
}
}
~
MKLPackedGemm
()
{
cblas_sgemm_free
(
weightPacked_
);
cblas_sgemm_free
(
weightTPacked_
);
}
};
}
// namespace paddle
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
0 → 100644
浏览文件 @
624e3e52
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLPackedRecurrentLayer.h"
namespace
paddle
{
REGISTER_LAYER
(
mkl_packed_recurrent
,
MKLPackedRecurrentLayer
);
bool
MKLPackedRecurrentLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
Layer
::
init
(
layerMap
,
parameterMap
))
return
false
;
CHECK_EQ
(
1U
,
inputLayers_
.
size
());
CHECK_EQ
(
1U
,
parameters_
.
size
());
CHECK_EQ
(
getSize
()
*
getSize
(),
parameters_
[
0
]
->
getSize
());
weight_
.
reset
(
new
Weight
(
getSize
(),
getSize
(),
parameters_
[
0
]));
if
(
biasParameter_
.
get
()
!=
NULL
)
{
bias_
.
reset
(
new
Weight
(
1
,
getSize
(),
biasParameter_
));
}
reversed_
=
config_
.
reversed
();
sgemm_packed_
.
reset
(
new
MKLPackedGemm
(
weight_
->
getW
()));
return
true
;
}
void
MKLPackedRecurrentLayer
::
resetState
()
{
CHECK
(
!
reversed_
)
<<
"state is not allowed for reversed recurrent layer"
;
Matrix
::
resizeOrCreate
(
prevOutput_
,
1
,
getSize
(),
/* trans= */
false
,
useGpu_
);
prevOutput_
->
zeroMem
();
}
void
MKLPackedRecurrentLayer
::
setState
(
LayerStatePtr
state
)
{
CHECK
(
state
->
value
.
size
()
==
1
)
<<
"one matrix is expected for RNN state"
;
prevOutput_
->
copyFrom
(
*
(
state
->
value
[
0
]));
}
LayerStatePtr
MKLPackedRecurrentLayer
::
getState
()
{
LayerStatePtr
res
=
std
::
make_shared
<
LayerState
>
();
res
->
value
.
push_back
(
prevOutput_
->
clone
(
0
,
0
,
useGpu_
));
res
->
value
[
0
]
->
copyFrom
(
*
prevOutput_
);
return
res
;
}
void
MKLPackedRecurrentLayer
::
forward
(
PassType
passType
)
{
REGISTER_TIMER_INFO
(
"RecurrentFwTimer"
,
getName
().
c_str
());
Layer
::
forward
(
passType
);
const
Argument
&
input
=
getInput
(
0
);
CHECK
(
input
.
sequenceStartPositions
);
int
batchSize
=
input
.
getBatchSize
();
size_t
numSequences
=
input
.
getNumSequences
();
resetOutput
(
batchSize
,
getSize
());
CHECK_EQ
(
getSize
(),
input
.
value
->
getWidth
());
const
int
*
starts
=
input
.
sequenceStartPositions
->
getData
(
false
);
CHECK_EQ
(
starts
[
numSequences
],
batchSize
);
output_
.
value
->
assign
(
*
input
.
value
);
if
(
bias_
)
{
output_
.
value
->
addBias
(
*
bias_
->
getW
(),
1
);
}
if
(
!
FLAGS_rnn_use_batch
)
{
forwardSequence
(
batchSize
,
numSequences
,
starts
);
}
else
{
forwardBatch
(
batchSize
,
numSequences
,
starts
);
}
}
void
MKLPackedRecurrentLayer
::
forwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
{
REGISTER_TIMER_INFO
(
"RecurrentFwSequence"
,
getName
().
c_str
());
frameOutput_
.
reserve
(
batchSize
);
for
(
int
i
=
frameOutput_
.
size
();
i
<
batchSize
;
++
i
)
{
Argument
arg
;
arg
.
value
=
Matrix
::
create
(
nullptr
,
/* height= */
1
,
getSize
(),
/* trans= */
false
,
useGpu_
);
arg
.
grad
=
Matrix
::
create
(
nullptr
,
/* height= */
1
,
getSize
(),
/* trans= */
false
,
useGpu_
);
frameOutput_
.
push_back
(
arg
);
}
for
(
int
i
=
0
;
i
<
batchSize
;
++
i
)
{
frameOutput_
[
i
].
value
->
setData
(
output_
.
value
->
getData
()
+
i
*
getSize
());
}
for
(
size_t
i
=
0
;
i
<
numSequences
;
++
i
)
{
forwardOneSequence
(
starts
[
i
],
starts
[
i
+
1
]
-
starts
[
i
]);
}
}
void
MKLPackedRecurrentLayer
::
forwardOneSequence
(
int
start
,
int
length
)
{
if
(
!
reversed_
)
{
if
(
prevOutput_
)
{
frameOutput_
[
start
].
value
->
mul
(
*
prevOutput_
,
*
weight_
->
getW
(),
1
,
1
);
}
activation_
->
forward
(
frameOutput_
[
start
]).
check
();
for
(
int
i
=
1
;
i
<
length
;
++
i
)
{
frameOutput_
[
start
+
i
].
value
->
mul
(
*
frameOutput_
[
start
+
i
-
1
].
value
,
*
weight_
->
getW
(),
1
,
1
);
activation_
->
forward
(
frameOutput_
[
start
+
i
]).
check
();
}
if
(
prevOutput_
)
{
prevOutput_
->
assign
(
*
frameOutput_
[
start
+
length
-
1
].
value
);
}
}
else
{
activation_
->
forward
(
frameOutput_
[
start
+
length
-
1
]).
check
();
for
(
int
i
=
length
-
2
;
i
>=
0
;
--
i
)
{
frameOutput_
[
start
+
i
].
value
->
mul
(
*
frameOutput_
[
start
+
i
+
1
].
value
,
*
weight_
->
getW
(),
1
,
1
);
activation_
->
forward
(
frameOutput_
[
start
+
i
]).
check
();
}
}
}
void
MKLPackedRecurrentLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
REGISTER_TIMER_INFO
(
"RecurrentBwTimer"
,
getName
().
c_str
());
const
Argument
&
input
=
getInput
(
0
);
CHECK
(
input
.
sequenceStartPositions
);
int
batchSize
=
input
.
getBatchSize
();
const
int
*
starts
=
input
.
sequenceStartPositions
->
getData
(
false
);
size_t
numSequences
=
input
.
getNumSequences
();
if
(
!
FLAGS_rnn_use_batch
)
{
backwardSequence
(
batchSize
,
numSequences
,
starts
);
}
else
{
backwardBatch
(
batchSize
,
numSequences
,
starts
);
}
if
(
input
.
grad
)
{
input
.
grad
->
add
(
*
output_
.
grad
);
}
if
(
bias_
&&
bias_
->
getWGrad
())
{
bias_
->
getWGrad
()
->
collectBias
(
*
output_
.
grad
,
1
);
bias_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
sgemm_packed_
.
reset
(
new
MKLPackedGemm
(
weight_
->
getW
()));
}
void
MKLPackedRecurrentLayer
::
backwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
{
REGISTER_TIMER_INFO
(
"RecurrentBwSequence"
,
getName
().
c_str
());
for
(
int
i
=
0
;
i
<
batchSize
;
++
i
)
{
frameOutput_
[
i
].
grad
->
setData
(
output_
.
grad
->
getData
()
+
i
*
getSize
());
}
for
(
size_t
i
=
0
;
i
<
numSequences
;
++
i
)
{
backwardOneSequence
(
starts
[
i
],
starts
[
i
+
1
]
-
starts
[
i
]);
}
}
void
MKLPackedRecurrentLayer
::
backwardOneSequence
(
int
start
,
int
length
)
{
MatrixPtr
weightT
=
weight_
->
getW
()
->
getTranspose
();
if
(
!
reversed_
)
{
for
(
int
i
=
length
-
1
;
i
>
0
;
--
i
)
{
activation_
->
backward
(
frameOutput_
[
start
+
i
]).
check
();
frameOutput_
[
start
+
i
-
1
].
grad
->
mul
(
*
frameOutput_
[
start
+
i
].
grad
,
*
weightT
,
1
,
1
);
}
activation_
->
backward
(
frameOutput_
[
start
]).
check
();
if
(
weight_
->
getWGrad
())
{
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
start
,
length
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
start
+
1
,
length
-
1
),
1
,
1
);
}
}
else
{
for
(
int
i
=
0
;
i
<
length
-
1
;
++
i
)
{
activation_
->
backward
(
frameOutput_
[
start
+
i
]).
check
();
frameOutput_
[
start
+
i
+
1
].
grad
->
mul
(
*
frameOutput_
[
start
+
i
].
grad
,
*
weightT
,
1
,
1
);
}
activation_
->
backward
(
frameOutput_
[
start
+
length
-
1
]).
check
();
if
(
weight_
->
getWGrad
())
{
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
start
+
1
,
length
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
start
,
length
-
1
),
1
,
1
);
}
}
}
void
MKLPackedRecurrentLayer
::
forwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
{
if
(
!
batchValue_
)
{
batchValue_
.
reset
(
new
SequenceToBatch
(
useGpu_
));
}
batchValue_
->
resizeOrCreateBatch
(
batchSize
,
numSequences
,
starts
,
reversed_
);
batchValue_
->
copyFromSeq
(
*
output_
.
value
);
{
REGISTER_TIMER_INFO
(
"RecurrentFwBatch"
,
getName
().
c_str
());
/* forward one batch */
for
(
size_t
n
=
0
;
n
<
batchValue_
->
getNumBatch
();
n
++
)
{
MatrixPtr
batch2
=
batchValue_
->
getBatchValue
(
n
);
if
(
n
!=
0
)
{
MatrixPtr
batch1
=
batchValue_
->
getBatchValue
(
n
-
1
,
batch2
->
getHeight
());
// batch2->mul(*batch1, *weight_->getW(), 1, 1);
sgemm_packed_
->
compute
(
batch2
,
batch1
);
}
#pragma omp parallel for collapse(2)
for
(
size_t
i
=
0
;
i
<
batch2
->
getHeight
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
batch2
->
getWidth
();
j
++
)
{
*
(
batch2
->
getData
()
+
i
*
batch2
->
getWidth
()
+
j
)
=
*
(
batch2
->
getData
()
+
i
*
batch2
->
getWidth
()
+
j
)
>
0
?
*
(
batch2
->
getData
()
+
i
*
batch2
->
getWidth
()
+
j
)
:
0
;
}
}
}
}
batchValue_
->
copyBackSeq
(
*
output_
.
value
);
}
void
MKLPackedRecurrentLayer
::
backwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
{
if
(
!
batchGrad_
)
{
batchGrad_
.
reset
(
new
SequenceToBatch
(
useGpu_
));
}
batchGrad_
->
shareIndexWith
(
*
batchValue_
);
size_t
numBatch
=
batchGrad_
->
getNumBatch
();
bool
backwardByBatch
=
numBatch
<
numSequences
;
batchGrad_
->
copyFromSeq
(
*
output_
.
grad
);
{
REGISTER_TIMER_INFO
(
"RecurrentBwData"
,
getName
().
c_str
());
/* backward one batch */
for
(
int
n
=
(
int
)
numBatch
-
1
;
n
>=
0
;
n
--
)
{
MatrixPtr
batch2
=
batchGrad_
->
getBatchValue
(
n
);
MatrixPtr
batch1
=
batchValue_
->
getBatchValue
(
n
,
batch2
->
getHeight
());
Argument
arg
;
arg
.
value
=
batch1
;
arg
.
grad
=
batch2
;
activation_
->
backward
(
arg
).
check
();
if
(
n
!=
0
)
{
batch1
=
batchGrad_
->
getBatchValue
(
n
-
1
,
batch2
->
getHeight
());
// batch1->mul(*batch2, *weightT, 1, 1);
sgemm_packed_
->
compute
(
batch1
,
batch2
,
true
);
}
if
(
backwardByBatch
&&
weight_
->
getWGrad
())
{
if
(
n
!=
0
)
{
/* backward weight */
batch1
=
batchValue_
->
getBatchValue
(
n
-
1
,
batch2
->
getHeight
());
weight_
->
getWGrad
()
->
mul
(
*
batch1
->
getTranspose
(),
*
batch2
,
1
,
1
);
}
}
}
}
batchGrad_
->
copyBackSeq
(
*
output_
.
grad
);
if
(
!
backwardByBatch
&&
weight_
->
getWGrad
())
{
REGISTER_TIMER_INFO
(
"RecurrentBwWeight"
,
getName
().
c_str
());
for
(
size_t
seq
=
0
;
seq
<
numSequences
;
++
seq
)
{
int
len
=
starts
[
seq
+
1
]
-
starts
[
seq
];
if
(
!
reversed_
)
{
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
starts
[
seq
],
len
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
starts
[
seq
]
+
1
,
len
-
1
),
1
,
1
);
}
else
{
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
starts
[
seq
]
+
1
,
len
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
starts
[
seq
],
len
-
1
),
1
,
1
);
}
}
}
}
}
// namespace paddle
paddle/gserver/layers/MKLPackedRecurrentLayer.h
0 → 100644
浏览文件 @
624e3e52
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include "Layer.h"
#include "MKLPackedGemm.h"
#include "SequenceToBatch.h"
#include "paddle/utils/Stat.h"
DECLARE_bool
(
rnn_use_batch
);
namespace
paddle
{
/**
* @brief MKLPackedRecurrentLayer takes 1 input layer. The output size is the
* same with
* input layer.
* For each sequence [start, end] it performs the following computation:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\
* out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
*
* \f]
* If reversed is true, the order is reversed:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\
* out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
* \f]
* There are two methods to calculate rnn. One way is to compute rnn one
* sequence by one sequence. The other way is to reorganize the input
* into batches, then compute rnn one batch by one batch. Users can select
* them by rnn_use_batch flag.
*/
class
MKLPackedRecurrentLayer
:
public
Layer
{
public:
explicit
MKLPackedRecurrentLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
void
resetState
()
override
;
void
setState
(
LayerStatePtr
state
)
override
;
LayerStatePtr
getState
()
override
;
protected:
/**
* @brief If user do not set --rnn_use_batch=true, it will
* compute rnn forward one sequence by one sequence in default.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
forwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Compute rnn forward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void
forwardOneSequence
(
int
start
,
int
length
);
/**
* @brief Compute rnn backward one sequence by onesequence.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
backwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Compute rnn backward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void
backwardOneSequence
(
int
start
,
int
length
);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch. It will convert batch shape to sequence after finishing forward.
* The batch info can refer to SequenceToBatch class.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
forwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
backwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
protected:
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
bias_
;
/// frameOutput_[i] is used to hold the i-th sample of output_
std
::
vector
<
Argument
>
frameOutput_
;
MatrixPtr
prevOutput_
;
/// Whether compute rnn by reverse.
bool
reversed_
;
/// If compute batch by batch, batchValue_ will be used to save the
/// reorganized input value.
std
::
unique_ptr
<
SequenceToBatch
>
batchValue_
;
/// If compute batch by batch, batchGrad_ will be used to save the
/// gradient with respect to reorganized input value.
std
::
unique_ptr
<
SequenceToBatch
>
batchGrad_
;
std
::
unique_ptr
<
MKLPackedGemm
>
sgemm_packed_
;
};
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录