Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
60d6348e
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
60d6348e
编写于
5月 02, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert develop
上级
86af6bdc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
30 addition
and
52 deletion
+30
-52
paddle/fluid/operators/math/pooling.cu
paddle/fluid/operators/math/pooling.cu
+30
-52
未找到文件。
paddle/fluid/operators/math/pooling.cu
浏览文件 @
60d6348e
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
@@ -22,7 +20,7 @@ namespace operators {
...
@@ -22,7 +20,7 @@ namespace operators {
namespace
math
{
namespace
math
{
template
<
typename
PoolProcess
,
typename
T
>
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool2D
(
const
int
nthreads
,
const
T
*
input_data
,
// NOLINT
__global__
void
KernelPool2D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
input_height
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
output_width
,
const
int
ksize_height
,
...
@@ -60,8 +58,8 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data, // NOLINT
...
@@ -60,8 +58,8 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data, // NOLINT
template
<
typename
PoolProcess
,
typename
T
>
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool2DGrad
(
__global__
void
KernelPool2DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
...
@@ -108,8 +106,8 @@ __global__ void KernelPool2DGrad(
...
@@ -108,8 +106,8 @@ __global__ void KernelPool2DGrad(
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelMaxPool2DGrad
(
__global__
void
KernelMaxPool2DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
...
@@ -160,10 +158,8 @@ template <typename PoolProcess, typename T>
...
@@ -160,10 +158,8 @@ template <typename PoolProcess, typename T>
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -205,10 +201,8 @@ class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
...
@@ -205,10 +201,8 @@ class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -252,10 +246,8 @@ class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -252,10 +246,8 @@ class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
framework
::
Tensor
*
input_grad
)
{
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -314,7 +306,7 @@ template class Pool2dGradFunctor<platform::CUDADeviceContext,
...
@@ -314,7 +306,7 @@ template class Pool2dGradFunctor<platform::CUDADeviceContext,
double
>
;
double
>
;
template
<
typename
PoolProcess
,
typename
T
>
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
// NOLINT
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
input_depth
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_depth
,
const
int
output_height
,
...
@@ -360,8 +352,8 @@ __global__ void KernelPool3D(const int nthreads, const T* input_data, // NOLINT
...
@@ -360,8 +352,8 @@ __global__ void KernelPool3D(const int nthreads, const T* input_data, // NOLINT
template
<
typename
PoolProcess
,
typename
T
>
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool3DGrad
(
__global__
void
KernelPool3DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
...
@@ -424,8 +416,8 @@ __global__ void KernelPool3DGrad(
...
@@ -424,8 +416,8 @@ __global__ void KernelPool3DGrad(
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelMaxPool3DGrad
(
__global__
void
KernelMaxPool3DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
...
@@ -482,10 +474,8 @@ template <typename PoolProcess, class T>
...
@@ -482,10 +474,8 @@ template <typename PoolProcess, class T>
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -535,10 +525,8 @@ class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
...
@@ -535,10 +525,8 @@ class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -590,10 +578,8 @@ class MaxPool3dGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -590,10 +578,8 @@ class MaxPool3dGradFunctor<platform::CUDADeviceContext, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
framework
::
Tensor
*
input_grad
)
{
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -750,10 +736,8 @@ template <typename T1, typename T2>
...
@@ -750,10 +736,8 @@ template <typename T1, typename T2>
class
MaxPool2dWithIndexFunctor
<
platform
::
CUDADeviceContext
,
T1
,
T2
>
{
class
MaxPool2dWithIndexFunctor
<
platform
::
CUDADeviceContext
,
T1
,
T2
>
{
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -795,10 +779,8 @@ class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
...
@@ -795,10 +779,8 @@ class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
framework
::
Tensor
*
input_grad
)
{
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_channels
=
input_grad
->
dims
()[
1
];
const
int
input_channels
=
input_grad
->
dims
()[
1
];
...
@@ -955,10 +937,8 @@ template <typename T1, typename T2>
...
@@ -955,10 +937,8 @@ template <typename T1, typename T2>
class
MaxPool3dWithIndexFunctor
<
platform
::
CUDADeviceContext
,
T1
,
T2
>
{
class
MaxPool3dWithIndexFunctor
<
platform
::
CUDADeviceContext
,
T1
,
T2
>
{
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
@@ -1007,10 +987,8 @@ class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
...
@@ -1007,10 +987,8 @@ class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
framework
::
Tensor
*
input_grad
)
{
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_channels
=
input_grad
->
dims
()[
1
];
const
int
input_channels
=
input_grad
->
dims
()[
1
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录