Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
5fd5bf9c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5fd5bf9c
编写于
9月 11, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
sync resnet model
上级
76e92274
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
108 addition
and
117 deletion
+108
-117
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+108
-117
未找到文件。
benchmark/fluid/models/resnet.py
浏览文件 @
5fd5bf9c
...
...
@@ -20,6 +20,7 @@ import functools
import
numpy
as
np
import
time
import
os
import
math
import
cProfile
,
pstats
,
StringIO
...
...
@@ -27,128 +28,120 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.profiler
as
profiler
# from recordio_converter import imagenet_train, imagenet_test
from
imagenet_reader
import
train
,
val
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_train
=
True
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_train
=
is_train
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
is_test
=
not
self
.
is_train
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
is_train
=
True
):
conv1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv1
,
act
=
act
,
is_test
=
not
is_train
)
def
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
True
):
ch_in
=
input
.
shape
[
1
]
# if args.data_format == 'NCHW' else input.shape[-1]
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
,
is_train
=
is_train
)
else
:
return
input
def
basicblock
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
bottleneck
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
*
4
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
is_train
=
is_train
)
conv3
=
conv_bn_layer
(
conv2
,
ch_out
*
4
,
1
,
1
,
0
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv3
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
stride
):
res_out
=
block_func
(
input
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
1
)
return
res_out
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
def
resnet_imagenet
(
input
,
class_dim
,
depth
=
50
,
data_format
=
'NCHW'
,
is_train
=
True
):
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
50
:
([
3
,
4
,
6
,
3
],
bottleneck
),
101
:
([
3
,
4
,
23
,
3
],
bottleneck
),
152
:
([
3
,
8
,
36
,
3
],
bottleneck
)
}
stages
,
block_func
=
cfg
[
depth
]
conv1
=
conv_bn_layer
(
input
,
ch_out
=
64
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
)
pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_type
=
'avg'
,
pool_size
=
3
,
pool_stride
=
2
)
res1
=
layer_warp
(
block_func
,
pool1
,
64
,
stages
[
0
],
1
)
res2
=
layer_warp
(
block_func
,
res1
,
128
,
stages
[
1
],
2
)
res3
=
layer_warp
(
block_func
,
res2
,
256
,
stages
[
2
],
2
)
res4
=
layer_warp
(
block_func
,
res3
,
512
,
stages
[
3
],
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
res4
,
pool_size
=
7
,
pool_type
=
'avg'
,
pool_stride
=
1
,
global_pooling
=
True
)
out
=
fluid
.
layers
.
fc
(
input
=
pool2
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
resnet_cifar10
(
input
,
class_dim
,
depth
=
32
,
data_format
=
'NCHW'
):
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
//
6
conv1
=
conv_bn_layer
(
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
_model_reader_dshape_classdim
(
args
,
is_train
):
model
=
resnet_cifar10
model
=
None
reader
=
None
if
args
.
data_set
==
"cifar10"
:
class_dim
=
10
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
32
,
32
]
else
:
dshape
=
[
32
,
32
,
3
]
model
=
resnet_cifar10
if
is_train
:
reader
=
paddle
.
dataset
.
cifar
.
train10
()
else
:
reader
=
paddle
.
dataset
.
cifar
.
test10
()
elif
args
.
data_set
==
"flowers"
:
if
args
.
data_set
==
"flowers"
:
class_dim
=
102
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
is_train
:
reader
=
paddle
.
dataset
.
flowers
.
train
()
else
:
...
...
@@ -159,7 +152,6 @@ def _model_reader_dshape_classdim(args, is_train):
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
not
args
.
data_path
:
raise
Exception
(
"Must specify --data_path when training with imagenet"
)
...
...
@@ -173,12 +165,11 @@ def _model_reader_dshape_classdim(args, is_train):
reader
=
train
(
xmap
=
False
)
else
:
reader
=
val
(
xmap
=
False
)
return
model
,
reader
,
dshape
,
class_dim
return
reader
,
dshape
,
class_dim
def
get_model
(
args
,
is_train
,
main_prog
,
startup_prog
):
model
,
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
pyreader
=
None
trainer_count
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
...
...
@@ -198,7 +189,8 @@ def get_model(args, is_train, main_prog, startup_prog):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict
=
model
(
input
,
class_dim
,
is_train
=
is_train
)
model
=
ResNet
(
is_train
=
is_train
)
predict
=
model
.
net
(
input
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
...
@@ -216,15 +208,14 @@ def get_model(args, is_train, main_prog, startup_prog):
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
epochs
=
[
30
,
60
,
80
,
90
]
epochs
=
[
30
,
60
,
90
]
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
args
.
learning_rate
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录