Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
5b9450ae
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5b9450ae
编写于
1月 22, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments
上级
4426573a
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
24 addition
and
14 deletion
+24
-14
paddle/function/CrossMapNormalOp.cpp
paddle/function/CrossMapNormalOp.cpp
+24
-14
未找到文件。
paddle/function/CrossMapNormalOp.cpp
浏览文件 @
5b9450ae
...
...
@@ -119,14 +119,14 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
*
* The original formula is:
*
*
Input(
x, y)
* Output(
x, y) =
---------------------------------------------
*
Input(i,
x, y)
* Output(
i, x, y) = -
---------------------------------------------
* -- upper
*
(k + alpha * > (Input(
x, y))^2) ^ (beta)
*
--
lower
*
(k + alpha * > (Input(j,
x, y))^2) ^ (beta)
*
-- j =
lower
*
* upper is `min(
F, f-[N/2] + N
)`
* lower if `max(0,
f-[N/2]
)`
* upper is `min(
C, c + N/2
)`
* lower if `max(0,
c - N/2
)`
*
* Function implementation:
*
...
...
@@ -134,8 +134,12 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
* And the meaning of each dimension(0-3) is respectively batch size,
* feature maps, rows and columns.
*
* Input and Output in the above formula is for each map of one image, and
* Input(x, y), Output(x, y) represents an element in an image.
* Input and Output in the above formula is for each map(i) of one image, and
* Input(i, x, y), Output(i, x, y) represents an element in an image.
*
* C is the number of feature maps of one image, and N is a hyper-parameters
* is configured when Function is initialized. The sum in the denominator
* is the sum of the same position in the neighboring maps.
*
* In the implementation of Function, k is equal to 1,
* so Function has no argument for k.
...
...
@@ -199,20 +203,26 @@ private:
/**
* \brief Backward calculation for normalization with across maps.
*
* Function implementation:
*
* The implementation of this Function is derived from the
* CrossMapNormalFunc implementation.
*
* InputGrad = OutputGrad * denoms ^ (-beta)
*
/
* +
|
(OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
*
/
*
-- upper
* +
>
(OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
*
-- lower
*
* Argument in the Function:
* The data of inputs/outputs format is the same as the forward interface
* and is NCHW.
*
* The upper and lower is the same as forward. The logic of the sum
* is also the same as forward.
*
* Function Arguments:
*
* \param size_ represent N
* \param scale_ represent alpha
/ N
* \param scale_ represent alpha
* \param pow_ represent beta
* \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录