From 5b9450ae0869673ae11000c89adeec4d237c4ccd Mon Sep 17 00:00:00 2001 From: hedaoyuan Date: Sun, 22 Jan 2017 17:46:28 +0800 Subject: [PATCH] follow comments --- paddle/function/CrossMapNormalOp.cpp | 38 ++++++++++++++++++---------- 1 file changed, 24 insertions(+), 14 deletions(-) diff --git a/paddle/function/CrossMapNormalOp.cpp b/paddle/function/CrossMapNormalOp.cpp index e795567cd..5c0bdd933 100644 --- a/paddle/function/CrossMapNormalOp.cpp +++ b/paddle/function/CrossMapNormalOp.cpp @@ -119,14 +119,14 @@ void CrossMapNormalGrad(real* inputsGrad, * * The original formula is: * - * Input(x, y) - * Output(x, y) = --------------------------------------------- - * -- upper - * (k + alpha * > (Input(x, y))^2) ^ (beta) - * -- lower + * Input(i, x, y) + * Output(i, x, y) = ---------------------------------------------- + * -- upper + * (k + alpha * > (Input(j, x, y))^2) ^ (beta) + * -- j = lower * - * upper is `min(F, f-[N/2] + N)` - * lower if `max(0, f-[N/2])` + * upper is `min(C, c + N/2)` + * lower if `max(0, c - N/2)` * * Function implementation: * @@ -134,8 +134,12 @@ void CrossMapNormalGrad(real* inputsGrad, * And the meaning of each dimension(0-3) is respectively batch size, * feature maps, rows and columns. * - * Input and Output in the above formula is for each map of one image, and - * Input(x, y), Output(x, y) represents an element in an image. + * Input and Output in the above formula is for each map(i) of one image, and + * Input(i, x, y), Output(i, x, y) represents an element in an image. + * + * C is the number of feature maps of one image, and N is a hyper-parameters + * is configured when Function is initialized. The sum in the denominator + * is the sum of the same position in the neighboring maps. * * In the implementation of Function, k is equal to 1, * so Function has no argument for k. @@ -199,20 +203,26 @@ private: /** * \brief Backward calculation for normalization with across maps. * + * Function implementation: + * * The implementation of this Function is derived from the * CrossMapNormalFunc implementation. * * InputGrad = OutputGrad * denoms ^ (-beta) - * / - * + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue - * / + * -- upper + * + > (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue + * -- lower * - * Argument in the Function: * The data of inputs/outputs format is the same as the forward interface * and is NCHW. * + * The upper and lower is the same as forward. The logic of the sum + * is also the same as forward. + * + * Function Arguments: + * * \param size_ represent N - * \param scale_ represent alpha / N + * \param scale_ represent alpha * \param pow_ represent beta * \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc * \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc -- GitLab